We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is a collection of facts, ideas, and techniques regarding the analysis of boundary value, initial and initial boundary value problems for partial differential equations. We begin by deriving some of the representative equations of mathematical physics, which then give rise to the classification of linear, second order, constant coefficient partial differential equations into: elliptic, parabolic, and hyperbolic equations. For each one of these classes we then discuss the main ideas behind problem with them and the existence of solutions: both classical and weak.
In 1955, Lehto showed that, for every measurable function
$\psi $
on the unit circle
$\mathbb T,$
there is a function f holomorphic in the unit disc, having
$\psi $
as radial limit a.e. on
$\mathbb T.$
We consider an analogous problem for solutions f of homogenous elliptic equations
$Pf=0$
and, in particular, for holomorphic functions on Riemann surfaces and harmonic functions on Riemannian manifolds.
We study a new family of sign-changing solutions to the stationary nonlinear Schrödinger equation
\[ -\Delta v +q v =|v|^{p-2} v, \qquad \text{in}\,{ {\mathbb{R}^{3}},} \]
with $2 < p < \infty$ and $q \ge 0$. These solutions are spiraling in the sense that they are not axially symmetric but invariant under screw motion, i.e., they share the symmetry properties of a helicoid. In addition to existence results, we provide information on the shape of spiraling solutions, which depends on the parameter value representing the rotational slope of the underlying screw motion. Our results complement a related analysis of Del Pino, Musso and Pacard in their study (2012, Manuscripta Math., 138, 273–286) for the Allen–Cahn equation, whereas the nature of results and the underlying variational structure are completely different.
A central goal of scientists and engineers is obtaining solutions of the differential equations that govern their physical systems.This can be done numerically for large and/or complex systems using finite-difference methods, finite-element methods, or spectral methods.This chapter gives an introduction and the formal basis for these methods, with particular emphasis on finite-difference methods.Second-order partial differential equations are classified as elliptic, parabolic, or hyperbolic, and the numerical methods developed for such equations must be faithful to their mathematical properties.
This introduction to the singularly perturbed methods in the nonlinear elliptic partial differential equations emphasises the existence and local uniqueness of solutions exhibiting concentration property. The authors avoid using sophisticated estimates and explain the main techniques by thoroughly investigating two relatively simple but typical non-compact elliptic problems. Each chapter then progresses to other related problems to help the reader learn more about the general theories developed from singularly perturbed methods. Designed for PhD students and junior mathematicians intending to do their research in the area of elliptic differential equations, the text covers three main topics. The first is the compactness of the minimization sequences, or the Palais-Smale sequences, or a sequence of approximate solutions; the second is the construction of peak or bubbling solutions by using the Lyapunov-Schmidt reduction method; and the third is the local uniqueness of these solutions.
In this paper, we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Hölder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on ${\bar \Omega}$. Both results are extended to an ample class of fully non-linear operators.
We consider the unique recovery of a non-compactly supported and non-periodic perturbation of a Schrödinger operator in an unbounded cylindrical domain, also called waveguide, from boundary measurements. More precisely, we prove recovery of a general class of electric potentials from the partial Dirichlet-to-Neumann map, where the Dirichlet data is supported on slightly more than half of the boundary and the Neumann data is taken on the other half of the boundary. We apply this result in different contexts including recovery of some general class of non-compactly supported coefficients from measurements on a bounded subset and recovery of an electric potential, supported on an unbounded cylinder, of a Schrödinger operator in a slab.
We consider reaction–diffusion equations under nonlinear boundary conditions where the nonlinearities are asymptotically linear at infinity and depend on a parameter. We prove that, as the parameter crosses some critical values, a resonance-type phenomenon provides solutions that bifurcate from infinity. We characterize the bifurcated branches when they are sub- or supercritical. We obtain both Landesman–Lazer-type conditions that guarantee the existence of solutions in the resonant case and an anti-maximum principle.
Using a regular Borel measure μ ⩾ 0 we derive a proper subspace of the commonly used Sobolev space D1(ℝN) when N ⩾ 3. The space resembles the standard Sobolev space H1(Ω) when Ω is a bounded region with a compact Lipschitz boundary ∂Ω. An equivalence characterization and an example are provided that guarantee that is compactly embedded into L1(RN). In addition, as an application we prove an existence result of positive solutions to an elliptic equation in ℝN that involves the Laplace operator with the critical Sobolev nonlinearity, or with a general nonlinear term that has a subcritical and superlinear growth. We also briefly discuss the compact embedding of to Lp(ℝN) when N ⩾ 2 and 2 ⩽ p ⩽ N.
In this paper, we investigate the Galerkin spectral approximation for elliptic control problems with integral control and state constraints. Firstly, an a posteriori error estimator is established,which can be acted as the equivalent indicatorwith explicit expression. Secondly, appropriate base functions of the discrete spacesmake it is probable to solve the discrete system. Numerical test indicates the reliability and efficiency of the estimator, and shows the proposed method is competitive for this class of control problems. These discussions can certainly be extended to two- and three-dimensional cases.
In this paper we are concerned with a distributed optimal control problem governed by an
elliptic partial differential equation. State constraints of box type are considered. We
show that the Lagrange multiplier associated with the state constraints, which is known to
be a measure, is indeed more regular under quite general assumptions. We discretize the
problem by continuous piecewise linear finite elements and we are able to prove that, for
the case of a linear equation, the order of convergence for the error in L2(Ω) of the control
variable is h |
log h | in dimensions 2 and 3.
In this paper, we investigate the error estimates and superconvergence property of mixed finite element methods for elliptic optimal control problems. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. We derive L2 and L∞-error estimates for the control variable. Moreover, using a recovery operator, we also derive some superconvergence results for the control variable. Finally, a numerical example is given to demonstrate the theoretical results.
We develop a framework for constructing mixed multiscale finite volume methods for elliptic equations with multiple scales arising from flows in porous media. Some of the methods developed using the framework are already known [20]; others are new. New insight is gained for the known methods and extra flexibility is provided by the new methods. We give as an example a mixed MsFV on uniform mesh in 2-D. This method uses novel multiscale velocity basis functions that are suited for using global information, which is often needed to improve the accuracy of the multiscale simulations in the case of continuum scales with strong non-local features. The method efficiently captures the small effects on a coarse grid. We analyze the new mixed MsFV and apply it to solve two-phase flow equations in heterogeneous porous media. Numerical examples demonstrate the accuracy and efficiency of the proposed method for modeling the flows in porous media with non-separable and separable scales.
This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic equations. The unknown coefficient of the elliptic equations depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic equations are uniquely solvable for the given class of coefficients. Proof of the existence of a quasisolution of the inverse problems is obtained.
We consider a class ofsemilinear elliptic equations of the form 15.7cm -$\varepsilon^{2}\Delta u(x,y)+a(x)W'(u(x,y))=0,\quad (x,y)\in{\mathbb{R}}^{2}$ where $\varepsilon>0$, $a:{\mathbb{R}}\to{\mathbb{R}}$ is a periodic, positive function and$W:{\mathbb{R}}\to{\mathbb{R}}$ is modeled on the classical two well Ginzburg-Landaupotential $W(s)=(s^{2}-1)^{2}$. We look for solutions to ([see full textsee full text])which verify theasymptotic conditions $u(x,y)\to\pm 1$ as $x\to\pm\infty$uniformly with respect to $y\in{\mathbb{R}}$.We show via variationalmethods that if ε is sufficiently small and a is not constant, then ([see full textsee full text])admits infinitely many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.
Let $n,d,k\geq2,b,y$ and $\ell\geq3$ be positive integers with the greatest prime factor of b not exceeding k. It is proved that the equation $n (n+d) \dotsb (n+(k-1)d)=b y^{\ell}$ has no solution if d exceeds d1, where d1 equals 30 if $\ell =3$; 950 if $\ell =4$; $5\times 10^4$ if $\ell=5$ or 6; 108 if $\ell=7$, 8, 9 or 10; 1015 if $\ell \geq 11$. This confirms a conjecture of Erdős on the above equation for a large number of values of d.
In this paper we present two-level overlapping domain decomposition preconditioners for the finite-element discretisation of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction is added. We present an algebraic way to define the coarse space, based on the concept of aggregation. This employs a (smoothed) aggregation technique and does not require the introduction of a coarse grid. We consider a set of assumptions on the coarse basis functions, to ensure bound for the resulting preconditioned system. These assumptions only involve geometrical quantities associated to the aggregates, namely their diameter and the overlap. A condition number which depends on the product of the relative overlap among the subdomains and the relative overlap among the aggregates is proved. Numerical experiments on a model problem are reported to illustrate the performance of the proposed preconditioners.
We show that there is no square other than 122 and 7202 such that it can be written as a product of k−1 integers out of k(≥3) consecutive positive integers. We give an extension of a theorem of Sylvester that a product of k consecutive integers each greater than k is divisible by a prime exceeding k.
It is proved that a product of four or more terms of positive integers in arithmetic progression with common difference a prime power is never a square. More general results are given which completely solve (1.1) with gcd(n, d)=1, k≥3 and 1<d≤104.