We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A fully discrete A-ϕ finite element scheme for a nonlinear model of type-II superconductors is proposed and analyzed. The nonlinearity is due to a field dependent conductivity with the regularized power-law form. The challenge of this model is the error estimate for the nonlinear term under the time derivative. Applying the backward Euler method in time discretisation, the well-posedness of the approximation problem is given based on the theory of monotone operators. The fully discrete system is derived by standard finite element method. The error estimate is suboptimal in time and space.
A domain decomposition based spectral collocation method is proposed for numerically solving Lane-Emden equations, which are frequently encountered in mathematical physics and astrophysics. Compared with the existing methods, this method requires less computational cost and is particularly suitable for long-term computation. The related error estimates are also established, indicating the spectral accuracy of the method. The numerical performance and efficiency of the method are illustrated by several numerical experiments.
We study the error analysis of the weak Galerkin finite element method in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and three dimensions. Using a modified duality argument proposed by Zhu and Wu, we obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error estimates with explicit dependence on the wave number k are derived. This shows that the pollution error in the broken H1-norm is bounded by under mesh condition k7/2h2≤C0 or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the finite element method obtained by existent dispersion analyses. Here h is the mesh size, p is the order of the approximation space and C0 is a constant independent of k and h. Furthermore, numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.
This paper is devoted to the study of an inverse problem containing a semilinear integrodifferential parabolic equation with an unknown memory kernel. This equation is accompanied by a Robin boundary condition. The missing kernel can be recovered from an additional global measurement in integral form. In this contribution, an error analysis is performed for a time-discrete numerical scheme based on Backward Euler's Method. The theoretical results are supported by some numerical experiments.
A nonconforming rectangular finite element method is proposed to solve a fluid structure interaction problem characterized by the Darcy-Stokes-Brinkman Equation with discontinuous coefficients across the interface of different structures. A uniformly stable mixed finite element together with Nitsche-type matching conditions that automatically adapt to the coupling of different sub-problem combinations are utilized in the discrete algorithm. Compared with other finite element methods in the literature, the new method has some distinguished advantages and features. The Boland-Nicolaides trick is used in proving the inf-sup condition for the multidomain discrete problem. Optimal error estimates are derived for the coupled problem by analyzing the approximation errors and the consistency errors. Numerical examples are also provided to confirm the theoretical results.
In this paper, nonconforming mixed finite element method is proposed to simulate the wave propagation in metamaterials. The error estimate of the semi-discrete scheme is given by convergence order O(h2), which is less than 40 percent of the computational costs comparing with the same effect by using Nédélec-Raviart element. A Crank-Nicolson full discrete scheme is also presented with O(τ2 + h2) by traditional discrete formula without using penalty method. Numerical examples of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our theories.
An optimal control problem is considered to find a stable surface traction, which minimizes the discrepancy between a given displacement field and its estimation. Firstly, the inverse elastic problem is constructed by variational inequalities, and a stable approximation of surface traction is obtained with Tikhonov regularization. Then a finite element discretization of the inverse elastic problem is analyzed. Moreover, the error estimation of the numerical solutions is deduced. Finally, a numerical algorithm is detailed and three examples in two-dimensional case illustrate the efficiency of the algorithm.
In this paper, we investigate the error estimates of mixed finite element methods for optimal control problems governed by general elliptic equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. We derive L2 and H–1-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.
We analyze here, a two-grid finite element method for the two dimensional time-dependent incompressible Navier-Stokes equations with non-smooth initial data. It involves solving the non-linear Navier-Stokes problem on a coarse grid of size H and solving a Stokes problem on a fine grid of size h, h « H. This method gives optimal convergence for velocity in H1-norm and for pressure in L2-norm. The analysis mainly focuses on the loss of regularity of the solution at t = 0 of the Navier-Stokes equations.
In this paper we present a fully discrete A-ø finite element method to solve Maxwell’s
equations with a nonlinear degenerate boundary condition, which represents a
generalization of the classical Silver-Müller condition for a
non-perfect conductor. The relationship between the normal components of the
electric field E and the magnetic field H obeys a power-law nonlinearity of the type H x n = n x (|E x n|α-1E x n) with α ∈ (0,1]. We prove the existence and
uniqueness of the solutions of the proposed A-ø scheme and derive the error estimates. Finally, we
present some numerical experiments to verify the theoretical result.
In this paper, we consider a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional Korteweg-de Vries (KdV) equation. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. We show that our scheme is unconditionally stable and convergent through analysis. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.
A new class of history-dependent variational–hemivariational inequalities was recently studied in Migórski et al. (2015Nonlinear Anal. Ser. B: Real World Appl.22, 604–618). There, an existence and uniqueness result was proved and used in the study of a mathematical model which describes the contact between a viscoelastic body and an obstacle. The aim of this paper is to continue the analysis of the inequalities introduced in Migórski et al. (2015Nonlinear Anal. Ser. B: Real World Appl.22, 604–618) and to provide their numerical analysis. We start with a continuous dependence result. Then we introduce numerical schemes to solve the inequalities and derive error estimates. We apply the results to a quasistatic frictional contact problem in which the material is modelled with a viscoelastic constitutive law, the contact is given in the form of normal compliance, and friction is described with a total slip-dependent version of Coulomb's law.
In this paper, we present and study a mixed variational method in order to approximate,with the finite element method, a Stokes problem with Tresca friction boundary conditions.These non-linear boundary conditions arise in the modeling of mold filling process bypolymer melt, which can slip on a solid wall. The mixed formulation is based on adualization of the non-differentiable term which define the slip conditions. Existence anduniqueness of both continuous and discrete solutions of these problems is guaranteed bymeans of continuous and discrete inf-sup conditions that are proved. Velocity and pressureare approximated by P1 bubble-P1 finite element and piecewise linearelements are used to discretize the Lagrange multiplier associated to the shear stress onthe friction boundary. Optimal a priori error estimates are derived usingclassical tools of finite element analysis and two uncoupled discrete inf-sup conditionsfor the pressure and the Lagrange multiplier associated to the fluid shear stress.
We derive asymptotic formulas for the solutions of the mixed boundary value problem forthe Poisson equation on the union of a thin cylindrical plate and several thin cylindricalrods. One of the ends of each rod is set into a hole in the plate and the other one issupplied with the Dirichlet condition. The Neumann conditions are imposed on the wholeremaining part of the boundary. Elements of the junction are assumed to have contrastingproperties so that the small parameter, i.e. the relative thickness,appears in the differential equation, too, while the asymptotic structures cruciallydepend on the contrastness ratio. Asymptotic error estimates are derived in anisotropicweighted Sobolev norms.
In this paper we propose a time discretization of a system of two parabolic equationsdescribing diffusion-driven atom rearrangement in crystalline matter. The equationsexpress the balances of microforces and microenergy; the two phase fields are the orderparameter and the chemical potential. The initial and boundary-value problem for theevolutionary system is known to be well posed. Convergence of the discrete scheme to thesolution of the continuous problem is proved by a careful development of uniformestimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, forthe difference of discrete and continuous solutions we prove an error estimate of orderone with respect to the time step.
In this paper we are concerned with a distributed optimal control problem governed by an
elliptic partial differential equation. State constraints of box type are considered. We
show that the Lagrange multiplier associated with the state constraints, which is known to
be a measure, is indeed more regular under quite general assumptions. We discretize the
problem by continuous piecewise linear finite elements and we are able to prove that, for
the case of a linear equation, the order of convergence for the error in L2(Ω) of the control
variable is h |
log h | in dimensions 2 and 3.
A new class of history-dependent quasivariational inequalities was recently studied in[M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising incontact mechanics. Eur. J. Appl. Math. 22 (2011) 471–491].Existence, uniqueness and regularity results were proved and used in the study of severalmathematical models which describe the contact between a deformable body and an obstacle.The aim of this paper is to provide numerical analysis of the quasivariationalinequalities introduced in the aforementioned paper. To this end we introduce temporallysemi-discrete and fully discrete schemes for the numerical approximation of theinequalities, show their unique solvability, and derive error estimates. We then applythese results to a quasistatic frictional contact problem in which the material’s behavioris modeled with a viscoelastic constitutive law, the contact is bilateral, and friction isdescribed with a slip-rate version of Coulomb’s law. We discuss implementation of thecorresponding fully-discrete scheme and present numerical simulation results on atwo-dimensional example.
In this paper, a new numerical method for solving the decoupled forward-backward stochastic differential equations (FBSDEs) is proposed based on some specially derived reference equations. We rigorously analyze errors of the proposed method under general situations. Then we present error estimates for each of the specific cases when some classical numerical schemes for solving the forward SDE are taken in the method; in particular, we prove that the proposed method is second-order accurate if used together with the order-2.0 weak Taylor scheme for the SDE. Some examples are also given to numerically demonstrate the accuracy of the proposed method and verify the theoretical results.
In this paper, we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions. We derive some superconvergence properties for the control variable and the state variables. Moreover, we derive L∞- and H−1 -error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.
In this paper we consider a model shape optimization problem. The state variable solvesan elliptic equation on a domain with one part of the boundary described as the graph of acontrol function. We prove higher regularity of the control and develop a priorierror analysis for the finite element discretization of the shape optimizationproblem under consideration. The derived a priori error estimates areillustrated on two numerical examples.