Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T16:54:27.470Z Has data issue: false hasContentIssue false

A priori error estimates for finite elementdiscretizations of a shape optimization problem

Published online by Cambridge University Press:  07 October 2013

Bernhard Kiniger
Affiliation:
Lehrstuhl für Optimale Steuerung, Technische Universität München, Fakultät für Mathematik, Boltzmannstraße 3, 85748 Garching b. München, Germany.. kiniger@ma.tum.de; vexler@ma.tum.de
Boris Vexler
Affiliation:
Lehrstuhl für Optimale Steuerung, Technische Universität München, Fakultät für Mathematik, Boltzmannstraße 3, 85748 Garching b. München, Germany.. kiniger@ma.tum.de; vexler@ma.tum.de
Get access

Abstract

In this paper we consider a model shape optimization problem. The state variable solvesan elliptic equation on a domain with one part of the boundary described as the graph of acontrol function. We prove higher regularity of the control and develop a priorierror analysis for the finite element discretization of the shape optimizationproblem under consideration. The derived a priori error estimates areillustrated on two numerical examples.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gascoigne: The finite element toolkit. http://www.gascoigne.uni-hd.de/
Rodobo: A c++ library for optimization with stationary and nonstationary pdes. http://rodobo.uni-hd.de/
Alkhutov, Y.A. and Kondratev, V.A., Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain. Differentsial′nye Uravneniya 28 (1992) 806818, 917. Google Scholar
A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, vol. 34, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993).
D. Braess, Finite Elemente, Springer-Verlag (2007).
Casas, E. and Tröltzsch, F., Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybernet. 31 (2002) 695712. Google Scholar
Casas, E. and Tröltzsch, F., A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53 (2012) 173206. Google Scholar
Chenais, D. and Zuazua, E., Controllability of an elliptic equation and its finite difference approximation by the shape of the domain. Numer. Math. 95 (2003) 6399. Google Scholar
Chenais, D. and Zuazua, E., Finite-element approximation of 2D elliptic optimal design. J. Math. Pures Appl. 85 (2006) 225249. Google Scholar
Dupont, T. and Scott, R., Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441463. Google Scholar
Eppler, K., Harbrecht, H., and Schneider, R., On convergence in elliptic shape optimization. SIAM J. Control Optim. 46 (2007) 6183 (electronic). Google Scholar
P. Grisvard, Elliptic problems in nonsmooth domains, vol. 24, Monographs and Studies in Mathematics, Pitman. Advanced Publishing Program, Boston, MA (1985).
J. Haslinger and R.A.E. Mäkinen, Introduction to shape optimization. Theory, approximation, and computation, vol. 7, Advances in Design and Control, Society for Industrial and Applied Mathematics SIAM. Philadelphia, PA (2003).
J. Haslinger and P. Neittaanmäki, Finite element approximation for optimal shape, material and topology design. John Wiley & Sons Ltd., Chichester, 2nd edition (1996).
K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, vol. 15, Advances in Design and Control, Society for Industrial and Applied Mathematics. SIAM, Philadelphia, PA (2008).
Jerison, D.S. and Kenig, C.E., The Neumann problem on Lipschitz domains. Bull. Amer. Math. Soc. (N.S.) 4 (1981) 203207. Google Scholar
Jerison, D.S. and Kenig, C.E., The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161219. Google Scholar
Kadlec, J., The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain. Czechoslovak Math. J. 14 (1964) 386393. Google Scholar
Kunisch, K. and Peichl, G., Numerical gradients for shape optimization based on embedding domain techniques. Comput. Optim. Appl. 18 (2001) 95114. Google Scholar
Laumen, M., A comparison of numerical methods for optimal shape design problems. Optim. Methods Softw. 10 (1999) 497537. Google Scholar
Laumen, M., Newton’s method for a class of optimal shape design problems. SIAM J. Optim. 10 (2000) 503533 (electronic). Google Scholar
Nečas, J., Sur la coercivité des formes sesquilinéaires, elliptiques. Rev. Roumaine Math. Pures Appl. 9 (1964) 4769. Google Scholar
Rannacher, R. and Scott, R., Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38 (1982) 437445. Google Scholar
Savaré, G., Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998) 176201. Google Scholar
Slawig, T., Shape optimization for semi-linear elliptic equations based on an embedding domain method. Appl. Math. Optim. 49 (2004) 183199. Google Scholar
J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization, Shape sensitivity analysis, vol. 16, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1992).
F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, Vieweg+Teubner (2009).