We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We model the slip length tribometer (SLT), originally presented by Pelz et al. (J. Fluid Mech., vol. 948, 2022, p. A8) in OpenFOAM. The plate tribometer is especially designed to simultaneously measure viscosity and slip length for lubrication gaps in the range of approximately 10 $\mathrm {\mu }$m at temperatures and surface roughnesses relevant to technical applications, with a temperature range of $-30$ to $100\,^\circ \mathrm {C}$ and surface roughness ranging from $10\ \mathrm {nm}$ to $1\ \mathrm {\mu }\mathrm {m}$. A simplified analytical model presented by Pelz et al. (J. Fluid Mech., vol. 948, 2022, p. A8) infers the slip length of the plate from the experimentally measured torque and the plate gap height. The present work verifies the analytical model using axisymmetric flow simulations and presents the effect of inlet on the numerical velocity profiles. The simulation results are in very good agreement with the results of the analytical model. The main conclusion drawn from this study is the validation of the Navier-slip boundary condition as an effective model for partial slip in computational fluid dynamics simulations and the negligible influence of the inlet on the fluid flow between the SLT's plates.
A common technique for simulating non–Newtonian fluid dynamics, such as snow avalanches, is to solve the Shallow Water Equations (SWE), together with a rheological model describing the momentum dissipation by shear stresses. Friction and cohesion terms are commonly modelled using the Voellmy friction model and, recently, the Bartelt cohesion model. Here, an adaptation of the Roe scheme that ensures the balance between the flux and pressure gradients and the friction source term is presented. An upwind scheme was used for the discretisation of the SWE numerical fluxes and the non–velocity-dependent terms of the friction–cohesion model, whereas a centred scheme was used for the velocity-dependent source terms. The model was tested in analytically solvable settings, laboratory experiments and real cases. In all cases, the model performed well, avoiding numerical instabilities and achieving stable and consistent solution even for an avalanche stopping on a sloping terrain.
We present an a posteriori shock-capturing finite volume method algorithm called GP-MOOD. The method solves a compressible hyperbolic conservative system at high-order solution accuracy in multiple spatial dimensions. The core design principle in GP-MOOD is to combine two recent numerical methods, the polynomial-free spatial reconstruction methods of GP (Gaussian Process) and the a posteriori detection algorithms of MOOD (Multidimensional Optimal Order Detection). We focus on extending GP’s flexible variability of spatial accuracy to an a posteriori detection formalism based on the MOOD approach. The resulting GP-MOOD method is a positivity-preserving method that delivers its solutions at high-order accuracy, selectable among three accuracy choices, including third-order, fifth-order, and seventh-order.
The numerical entropy production (NEP) for shallow water equations (SWE) is discussed and implemented as a smoothness indicator. We consider SWE in three different dimensions, namely, one-dimensional, one-and-a-half-dimensional, and two-dimensional SWE. An existing numerical entropy scheme is reviewed and an alternative scheme is provided. We prove the properties of these two numerical entropy schemes relating to the entropy steady state and consistency with the entropy equality on smooth regions. Simulation results show that both schemes produce NEP with the same behaviour for detecting discontinuities of solutions and perform similarly as smoothness indicators. An implementation of the NEP for an adaptive numerical method is also demonstrated.
This study proposed the application of a novel immersed boundary method (IBM) for the treatment of irregular geometries using Cartesian computational grids for high speed compressible gas flows modelled using the unsteady Euler equations. Furthermore, the method is accelerated through the use of multiple Graphics Processing Units – specifically using Nvidia’s CUDA together with MPI - due to the computationally intensive nature associated with the numerical solution to multi-dimensional continuity equations. Due to the high degree of locality required for efficient multiple GPU computation, the Split Harten-Lax-van-Leer (SHLL) scheme is employed for vector splitting of fluxes across cell interfaces. NVIDIA visual profiler shows that our proposed method having a computational speed of 98.6 GFLOPS and 61% efficiency based on the Roofline analysis that provides the theoretical computing speed of reaching 160 GLOPS with an average 2.225 operations/byte. To demonstrate the validity of the method, results from several benchmark problems covering both subsonic and supersonic flow regimes are presented. Performance testing using 96 GPU devices demonstrates a speed up of 89 times that of a single GPU (i.e. 92% efficiency) for a benchmark problem employing 48 million cells. Discussions regarding communication overhead and parallel efficiency for varying problem sizes are also presented.
In this study MHD flow around and through porous cylinder is numerically investigated. The governing equations are developed in polar coordinate arrangement in both porous and non-porous media on the basis of single-domain technique. The equations are solved numerically based on finite volume method over staggered grid structure. Nusselt number and drag coefficient are selected as two key parameters describing performance of this system. By applying response surface methodology the sensitivity of these parameters to main factors of the problem, including Stuart number, Darcy number and Reynolds number are quantified. RSM is also utilized to perform an optimization process to find the best condition in which the lowest drag force and highest heat transfer rate occur simultaneously. The CFD analysis is carried out for variant Reynolds numbers (10 ≤ Re ≤ 40), Darcy numbers (10-6 ≤ Da ≤ 10-2) and Stuart numbers (2 ≤ N ≤ 10). Streamlines and isotherms are presented to indicate the impacts of such parameters on heat and fluid flow. It can be seen that, Drag coefficient and Nusselt number increase by augmenting magnetic field strength. Beside, Darcy number and Reynolds numbers have a direct and inverse effect on Nuave and Cd, respectively. Results of optimization process show that Nuave and Cd are more sensitive to Reynolds and Stuart numbers, respectively, while they less sensitive to Darcy number. Moreover, it is revealed that the optimum condition occurs at Da = 10-2, Re = 38.1 and N = 4.49.
A two-layer non-hydrostatic numerical model is proposed to simulate the formation of undular bores by tsunami wave fission. These phenomena could not be produced by a hydrostatic model. Here, we derived a modified Shallow Water Equations with involving hydrodynamic pressure using two layer approach. Staggered finite volume method with predictor corrector step is applied to solve the equation numerically. Numerical dispersion relation is derived from our model to confirm the exact linear dispersion relation for dispersive waves. To illustrate the performance of our non-hydrostatic scheme in case of linear wave dispersion and non-linearity, four test cases of free surface flows are provided. The first test case is standing wave in a closed basin, which test the ability of the numerical scheme in simulating dispersive wave motion with the correct frequency. The second test case is the solitary wave propagation as the examination of owing balance between dispersion and nonlinearity. Regular wave propagation over a submerged bar test by Beji is simulated to show that our non-hydrostatic scheme described well the shoaling process as well as the linear dispersion compared with the experimental data. The last test case is the undular bore propagation.
We introduce a third order adaptive mesh method to arbitrary high order Godunov approach. Our adaptive mesh method consists of two parts, i.e., mesh-redistribution algorithm and solution algorithm. The mesh-redistribution algorithm is derived based on variational approach, while a new solution algorithm is developed to preserve high order numerical accuracy well. The feature of proposed Adaptive ADER scheme includes that 1). all simulations in this paper are stable for large CFL number, 2). third order convergence of the numerical solutions is successfully observed with adaptive mesh method, and 3). high resolution and non-oscillatory numerical solutions are obtained successfully when there are shocks in the solution. A variety of numerical examples show the feature well.
A class of finite volume methods is developed for pricing either European or American options under jump-diffusion models based on a linear finite element space. An easy to implement linear interpolation technique is derived to evaluate the integral term involved, and numerical analyses show that the full discrete system matrices are M-matrices. For European option pricing, the resulting dense linear systems are solved by the generalised minimal residual (GMRES) method; while for American options the resulting linear complementarity problems (LCP) are solved using the modulus-based successive overrelaxation (MSOR) method, where the H+-matrix property of the system matrix guarantees convergence. Numerical results are presented to demonstrate the accuracy, efficiency and robustness of these methods.
Admissible regions for higher-order finite volume method (FVM) grids are considered. A new Hermite quintic FVM and a new hybrid quintic FVM are constructed to solve elliptic boundary value problems, and the corresponding admissible regions are investigated. A sufficient condition for the uniform local-ellipticity of the new hybrid quintic FVM is obtained when its admissible region is known. In addition, the admissible regions for a large number of higher-order FVMs are provided. For the same class of FVM (Lagrange, Hermite or hybrid), the higher order FVM has a smaller admissible region such that stronger geometric restrictions are required to guarantee its uniform local-ellipticity.
A genuine finite volume method based on the lattice Boltzmann equation (LBE) for nearly incompressible flows is developed. The proposed finite volume lattice Boltzmann method (FV-LBM) is grid-transparent, i.e., it requires no knowledge of cell topology, thus it can be implemented on arbitrary unstructured meshes for effective and efficient treatment of complex geometries. Due to the linear advection term in the LBE, it is easy to construct multi-dimensional schemes. In addition, inviscid and viscous fluxes are computed in one step in the LBE, as opposed to in two separate steps for the traditional finite-volume discretization of the Navier-Stokes equations. Because of its conservation constraints, the collision term of the kinetic equation can be treated implicitly without linearization or any other approximation, thus the computational efficiency is enhanced. The collision with multiple-relaxation-time (MRT) model is used in the LBE. The developed FV-LBM is of second-order convergence. The proposed FV-LBM is validated with three test cases in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the Blasius boundary layer; and (c) the steady flow past a cylinder at the Reynolds numbers Re=10, 20, and 40. The results verify the designed accuracy and efficacy of the proposed FV-LBM.
We compare in this paper the properties of Osher flux with O-variant and P-variant (Osher-O flux and Osher-P flux) in finite volume methods for the two-dimensional Euler equations and propose an entropy fix technique to improve their robustness. We consider both first-order and second-order reconstructions. For inviscid hypersonic flow past a circular cylinder, we observe different problems for different schemes: A first-order Osher-O scheme on quadrangular grids yields a carbuncle shock, while a first-order Osher-P scheme results in a dislocation shock for high Mach number cases. In addition, a second-order Osher scheme can also yield a carbuncle shock or be unstable. To improve the robustness of these schemes we propose an entropy fix technique, and then present numerical results to show the effectiveness of the proposed method. In addition, the influence of grid aspects ratio, relative shock position to the grid and Mach number on shock stability are tested. Viscous heating problem and double Mach reflection problem are simulated to test the influence of the entropy fix on contact resolution and boundary layer resolution.
In this paper, we introduce a high-order accurate constrained transport type finite volume method to solve ideal magnetohydrodynamic equations on two-dimensional triangular meshes. A new divergence-free WENO-based reconstruction method is developed to maintain exactly divergence-free evolution of the numerical magnetic field. In this formulation, the normal component of the magnetic field at each face of a triangle is reconstructed uniquely and with the desired order of accuracy. Additionally, a new weighted flux interpolation approach is also developed to compute the z-component of the electric field at vertices of grid cells. We also present numerical examples to demonstrate the accuracy and robustness of the proposed scheme.
Aerosol modeling is very important to study the behavior of aerosol dynamics in atmospheric environment. In this paper we consider numerical methods for the nonlinear aerosol dynamic equations on time and particle size. The finite volume element methods based on the linear interpolation and Hermite interpolation are provided to approximate the aerosol dynamic equation where the condensation and removal processes are considered. Numerical examples are provided to show the efficiency of these numerical methods.
In this paper, an optimal bicubic finite volume method is established and analyzed for elliptic equations on quadrilateral meshes. Base on the so-called elementwise stiffness matrix analysis technique, we proceed the stability analysis. It is proved that the new scheme has optimal convergence rate in H1 norm. Additionally, we apply this analysis technique to bilinear finite volume method. Finally, numerical examples are provided to confirm the theoretical analysis of bicubic finite volume method.
We discuss the implementation of the finite volume method on a staggered grid to solve the full shallow water equations with a conservative approximation for the advection term. Stelling & Duinmeijer [15] noted that the advection approximation may be energy-head or momentum conservative, and if suitable which of these to implement depends upon the particular flow being considered. The momentum conservative scheme pursued here is shown to be suitable for 1D problems such as transcritical flow with a shock and dam break over a rectangular bed, and we also found that our simulation of dam break over a dry sloping bed is in good agreement with the exact solution. Further, the results obtained using the generalised momentum conservative approximation for 2D shallow water equations to simulate wave run up on a conical island are in good agreement with benchmark experimental data.
We consider the relativistic Euler equations governing spherically symmetric, perfect fluid flows on the outer domain of communication of Schwarzschild space-time, and we introduce a version of the finite volume method which is formulated from the geometric formulation (and thus takes the geometry into account at the discretization level) and is well-balanced, in the sense that it preserves steady solutions to the Euler equations on the curved geometry under consideration. In order to formulate our method, we first derive a closed formula describing all steady and spherically symmetric solutions to the Euler equations posed on Schwarzschild spacetime. Second, we describe a geometry-preserving, finite volume method which is based from the family of steady solutions to the Euler system. Our scheme is second-order accurate and, as required, preserves the family of steady solutions at the discrete level. Numerical experiments are presented which demonstrate the efficiency and robustness of the proposed method even for solutions containing shock waves and nonlinear interacting wave patterns. As an application, we investigate the late-time asymptotics of perturbed steady solutions and demonstrate its convergence for late time toward another steady solution, taking the overall effect of the perturbation into account.
Centered numerical fluxes can be constructed for compressible Euler equations which preserve kinetic energy in the semi-discrete finite volume scheme. The essential feature is that the momentum flux should be of the form where and are any consistent approximations to the pressure and the mass flux. This scheme thus leaves most terms in the numerical flux unspecified and various authors have used simple averaging. Here we enforce approximate or exact entropy consistency which leads to a unique choice of all the terms in the numerical fluxes. As a consequence novel entropy conservative flux that also preserves kinetic energy for the semi-discrete finite volume scheme has been proposed. These fluxes are centered and some dissipation has to be added if shocks are present or if the mesh is coarse. We construct scalar artificial dissipation terms which are kinetic energy stable and satisfy approximate/exact entropy condition. Secondly, we use entropy-variable based matrix dissipation flux which leads to kinetic energy and entropy stable schemes. These schemes are shown to be free of entropy violating solutions unlike the original Roe scheme. For hypersonic flows a blended scheme is proposed which gives carbuncle free solutions for blunt body flows. Numerical results for Euler and Navier-Stokes equations are presented to demonstrate the performance of the different schemes.
We obtain the coefficient matrices of the finite element (FE), finite volume (FV) and finite difference (FD) methods based on P1-conforming elements on a quasi-uniform mesh, in order to approximately solve a boundary value problem involving the elliptic Poisson equation. The three methods are shown to possess the same H1-stability and convergence. Some numerical tests are made, to compare the numerical results from the three methods and to review our theoretical results.