In this article we examine the motion of fictitious Trojan planets close to the equilateral Lagrangean equilibrium points in extrasolar planetary systems. Whether there exist stable motion in this area or not depends on the massratio of the primariy bodies in the restricted three body problem, namely the host star and the gasgiant. Taking into account also the eccentricity of the primaries we show via results of extensive numerical integrations that Trojan planets may survive only for e < 0.25. We also show first results of a mapping in the 1:1 resonance with a gas giant on an eccentric orbit which is applied to the extrasolar planetary systems HD 17051. We furthermore study the influence of an additional outer planet which perturbs the motion of the gasgiant as well as the Trojan cloud around its L4 Lagrangean point.