Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T12:42:40.517Z Has data issue: false hasContentIssue false

On the dynamics of Trojan planets in extrasolar planetary systems

Published online by Cambridge University Press:  01 October 2007

R. Dvorak
Affiliation:
Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, A-1180, Vienna, Austria email: dvorak@astro.univie.ac.at, lhotka@astro.univie.ac.at
R. Schwarz
Affiliation:
Department of Astronomy, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary email: schwarz@astro.univie.ac.at
Ch. Lhotka
Affiliation:
Institute for Astronomy, University of Vienna, Türkenschanzstrasse 17, A-1180, Vienna, Austria email: dvorak@astro.univie.ac.at, lhotka@astro.univie.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we examine the motion of fictitious Trojan planets close to the equilateral Lagrangean equilibrium points in extrasolar planetary systems. Whether there exist stable motion in this area or not depends on the massratio of the primariy bodies in the restricted three body problem, namely the host star and the gasgiant. Taking into account also the eccentricity of the primaries we show via results of extensive numerical integrations that Trojan planets may survive only for e < 0.25. We also show first results of a mapping in the 1:1 resonance with a gas giant on an eccentric orbit which is applied to the extrasolar planetary systems HD 17051. We furthermore study the influence of an additional outer planet which perturbs the motion of the gasgiant as well as the Trojan cloud around its L4 Lagrangean point.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Beaugé, C., Sándor, Zs., Érdi, B., & Süli, Á.: 2007, A&A, 463, 359.Google Scholar
Chambers, J. E.: 1999, MNRAS, 304, 793.CrossRefGoogle Scholar
Danby, J. M. A.: 1964, AJ, 69, 165.CrossRefGoogle Scholar
Dvorak, R. & Schwarz, R.: 2005, CeMDA, 92, 19.CrossRefGoogle Scholar
Efthymiopoulos, C. & Sándor, Z.,: 2005, MNRAS, 364, 253.CrossRefGoogle Scholar
Érdi, B. & Sándor, Z.: 2005, CeMDA, 92, 113.CrossRefGoogle Scholar
Érdi, B., Nagy, I., Fróhlich, G., Sándor, Zs. and Súli, Á.: 2007b, MNRAS, 381, 33.CrossRefGoogle Scholar
Ford, E. B. & Gaudi, B. S.: 2006, ApJ, 652, 137.CrossRefGoogle Scholar
Goździewski, K. & Konacki, M.: 2007, ApJ, 647, 573.CrossRefGoogle Scholar
Hadjidemetriou, J.: 1991, In Roy, A. E. (Ed.), “Predictability, Stability and Chaos in N–Body Dynamical Systems’, Plenum Press, 157.CrossRefGoogle Scholar
Hajidemetriou, j.: 1993, CeMDA, 56, 563.CrossRefGoogle Scholar
Lhotka, Ch., Efthymiopolous, C. & Dvorak, R.: 2008, MNRAS, 384, 1165.CrossRefGoogle Scholar
Laughlin, G. & Chambers, J. E.: 2002, AJ, 124, 592.CrossRefGoogle Scholar
Marchal, C.: 1990, The three-Body Problem, Elsevier, 49.Google Scholar
Marzari, F. & Scholl, H.: 1998, A&A, 339, 278.Google Scholar
Menou, K. & Tabachnik, S.: 2003, AJ, 583, 473.CrossRefGoogle Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R.: 2005, Nature, 435, 462.CrossRefGoogle Scholar
Nauenberg, M.: 2002, AJ., 124, 2332.CrossRefGoogle Scholar
Schwarz, R., Pilat-Lohinger, E., Dvorak, R., Érdi, B., & Sándor, Zs.: 2005, AsBio, 5, 579.Google Scholar
Schwarz, R., Dvorak, R., Pilat-Lohinger, E., Süli, Á., & Érdi, B.: 2007a, A&A, 462, 1165.Google Scholar
Schwarz, R., Dvorak, R., Süli, Á., & Érdi, B.: 2007b, A&A, 474, 1023.Google Scholar