We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop new algorithms for approximating extremal toric Kähler metrics. We focus on an extremal metric on , which is conformal to an Einstein metric (the Chen–LeBrun–Weber metric). We compare our approximation to one given by Bunch and Donaldson and compute various geometric quantities. In particular, we demonstrate a small eigenvalue of the scalar Laplacian of the Einstein metric that gives numerical evidence that the Einstein metric is conformally unstable under Ricci flow.
In this paper, we consider contact metric three-manifolds $(M;\unicode[STIX]{x1D702},g,\unicode[STIX]{x1D711},\unicode[STIX]{x1D709})$ which satisfy the condition $\unicode[STIX]{x1D6FB}_{\unicode[STIX]{x1D709}}h=\unicode[STIX]{x1D707}h\unicode[STIX]{x1D711}+\unicode[STIX]{x1D708}h$ for some smooth functions $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$, where $2h=\unicode[STIX]{x00A3}_{\unicode[STIX]{x1D709}}\unicode[STIX]{x1D711}$. We prove that if $M$ is conformally flat and if $\unicode[STIX]{x1D707}$ is constant, then $M$ is either a flat manifold or a Sasakian manifold of constant curvature $+1$. We cannot extend this result for a smooth function $\unicode[STIX]{x1D707}$. Indeed, we give such an example of a conformally flat contact three-manifold which is not of constant curvature.
Let $M$ be a Fano manifold. We call a Kähler metric ${\it\omega}\in c_{1}(M)$ a Kähler–Ricci soliton if it satisfies the equation $\text{Ric}({\it\omega})-{\it\omega}=L_{V}{\it\omega}$ for some holomorphic vector field $V$ on $M$. It is known that a necessary condition for the existence of Kähler–Ricci solitons is the vanishing of the modified Futaki invariant introduced by Tian and Zhu. In a recent work of Berman and Nyström, it was generalized for (possibly singular) Fano varieties, and the notion of algebrogeometric stability of the pair $(M,V)$ was introduced. In this paper, we propose a method of computing the modified Futaki invariant for Fano complete intersections in projective spaces.
The aim of this paper is to extend for the m-quasi-Einstein metrics some integral formulae obtained in [1] (C. Aquino, A. Barros and E. Ribeiro Jr., Some applications of the Hodge-de Rham decomposition to Ricci solitons, Results Math. 60 (2011), 245–254) for Ricci solitons and derive similar results achieved there. Moreover, we shall extend the m-Bakry-Emery Ricci tensor for a vector field X on a Riemannian manifold instead of a gradient field ∇f, in order to obtain some results concerning these manifolds that generalize their correspondents to a gradient field.
We show that on the Hilbert scheme of n points on ℂ2, the hyperkähler metric constructed by Nakajima via hyperkähler reduction is the quasi-asymptotically locally Euclidean (QALE) metric constructed by Joyce.
In this note, we propose an extension of the compactness property for Kähler-Einstein metrics to critical metrics of Weyl functional on compact Kähler surfaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.