Cladding tubes of water-cooled nuclear reactors are usually made of Zircaloy and are an important retaining element for radionuclides present in the fuel both during predisposal activities such as reloading of fuel assemblies from interim storage casks to final disposal casks and during final disposal in the case of canister breaching. However, cladding integrity is affected by various processes during reactor operation and beyond, e.g. fuel cladding chemical interaction and fission product precipitation onto the inner cladding surface. Using experimental and modelling methods, the radionuclide inventory of an irradiated Zircaloy-4 plenum section is analyzed. Quantities of 235/238U, 237Np, 238/239/240/241/242Pu, 241/243Am, 243/244Cm besides 14C, 55Fe, 125Sb, 154Eu, and 134/137Cs were (radio-)chemically determined in digested Zircaloy-4 subsamples. Measured inventories of activation products in the Zr-alloy are in good agreement with calculated values. However, amounts of actinides and fission products exceed the calculated inventory by factor ∼57 (minor actinides and non-volatile fission products) and ∼114 (137Cs). Excess of minor actinides and part of enhanced Cs inventory originate from fuel residues deposited on the inner cladding surface during fuel rod fabrication, whereas vast amount of cesium is volatilized from subjacent fuel pellets and transported to the plenum.