We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $K$ be an algebraic number field. A cuboid is said to be $K$-rational if its edges and face diagonals lie in $K$. A $K$-rational cuboid is said to be perfect if its body diagonal lies in $K$. The existence of perfect $\mathbb{Q}$-rational cuboids is an unsolved problem. We prove here that there are infinitely many distinct cubic fields $K$ such that a perfect $K$-rational cuboid exists; and that, for every integer $n\geq 2$, there is an algebraic number field $K$ of degree $n$ such that there exists a perfect $K$-rational cuboid.
In this article, we begin by recalling the inversion formula for the convolution with the box spline. The equivariant cohomology and the equivariant $K$-theory with respect to a compact torus $G$ of various spaces associated to a linear action of $G$ in a vector space $M$ can both be described using some vector spaces of distributions, on the dual of the group $G$ or on the dual of its Lie algebra $\mathfrak{g}$. The morphism from $K$-theory to cohomology is analyzed, and multiplication by the Todd class is shown to correspond to the operator (deconvolution) inverting the semi-discrete convolution with a box spline. Finally, the multiplicities of the index of a $G$-transversally elliptic operator on $M$ are determined using the infinitesimal index of the symbol.
Convolution structures are group-like objects that were extensively studied by harmonic analysts. We use them to define H0 and H1 for Arakelov divisors over number fields. We prove the analogs of the Riemann–Roch and Serre duality theorems. This brings more structure to the works of Tate and van der Geer and Schoof. The H1 is defined by a procedure very similar to the usual Ĉech cohomology. Serre′s duality becomes Pontryagin duality of convolution structures. The whole theory is parallel to the geometric case.
In this paper we establish Riemann–Roch and Lefschtez–Riemann–Roch theorems for arbitrary proper maps of finite cohomological dimension between algebraic stacks in the sense of Artin. The Riemann–Roch theorem is established as a natural transformation between the G-theory of algebraic stacks and topological G-theory for stacks: we define the latter as the localization of G-theory by topological K-homology. The Lefschtez–Riemann–Roch is an extension of this including the action of a torus for Deligne–Mumford stacks. This generalizes the corresponding Riemann–Roch theorem (Lefschetz–Riemann–Roch theorem) for proper maps between schemes (that are also equivariant for the action of a torus, respectively) making use of some fundamental results due to Vistoli and Toen. A key result established here is that topological G-theory (as well as rational G-theory) has cohomological descent on the isovariant étale site of an algebraic stack. This extends cohomological descent for topological G-theory on schemes as proved by Thomason.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.