We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study 2-generated subgroups $\langle f,g\rangle <\operatorname{Homeo}^{+}(I)$ such that $\langle f^{2},g^{2}\rangle$ is isomorphic to Thompson’s group $F$, and such that the supports of $f$ and $g$ form a chain of two intervals. We show that this class contains uncountably many isomorphism types. These include examples with non-abelian free subgroups, examples which do not admit faithful actions by $C^{2}$ diffeomorphisms on 1-manifolds, examples which do not admit faithful actions by $PL$ homeomorphisms on an interval, and examples which are not finitely presented. We thus answer questions due to Brin. We also show that many relatively uncomplicated groups of homeomorphisms can have very complicated square roots, thus establishing the behavior of square roots of $F$ as part of a general phenomenon among subgroups of $\operatorname{Homeo}^{+}(I)$.
Free binary systems are shown not to admit idempotent means. This refutes a conjecture of the author. It is also shown that the extension of Hindman’s theorem to nonassociative binary systems formulated and conjectured by the author is false.
Hughes has defined a class of groups that we call finite similarity structure (FSS) groups. Each FSS group acts on a compact ultrametric space by local similarities. The best-known example is Thompson’s group V. Guided by previous work on Thompson’s group, we show that many FSS groups are of type F∞. This generalizes work of Ken Brown from the 1980s.
In this note we show that the members of a certain class of local similarity groups are ${l}^{2}$-invisible, i.e. the (non-reduced) group homology of the regular unitary representation vanishes in all degrees. This class contains groups of type ${F}_{\infty }$, e.g. Thompson’s group $V$ and Nekrashevych–Röver groups. They yield counterexamples to a generalized zero-in-the-spectrum conjecture for groups of type ${F}_{\infty }$.
In a study of the word problem for groups, R. J. Thompson considered a certain group $F$ of self-homeomorphisms of the Cantor set and showed, among other things, that $F$ is finitely presented. Using results of K. S. Brown and R. Geoghegan, M. N. Dyer showed that $F$ is the fundamental group of a finite two-complex
${{Z}^{2}}$
having Euler characteristic one and which is Cockcroft, in the sense that each map of the two-sphere into
${{Z}^{2}}$
is homologically trivial. We show that no proper covering complex of
${{Z}^{2}}$
is Cockcroft. A general result on Cockcroft properties implies that no proper regular covering complex of any finite two-complex with fundamental group $F$ is Cockcroft.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.