Mixtures of increasing failure rate distributions can decrease, at least in some intervals of time. Usually this property is observed asymptotically, as t → ∞, which is due to the fact that a mixture failure rate is ‘bent down’, as the weakest populations are dying out first. We consider a survival model that generalizes additive hazards models, proportional hazards models, and accelerated life models very well known in reliability and survival analysis. We obtain new explicit asymptotic relations for a general setting and study specific cases. Under reasonable assumptions we prove that the asymptotic behavior of the mixture failure rate depends only on the behavior of the mixing distribution in the neighborhood of the left-hand endpoint of its support, and not on the whole mixing distribution.