Hostname: page-component-5f745c7db-hj587 Total loading time: 0 Render date: 2025-01-06T05:49:38.807Z Has data issue: true hasContentIssue false

Separability of Item and Person Parameters in Response Time Models

Published online by Cambridge University Press:  01 January 2025

Gerard J. P. Van Breukelen*
Affiliation:
Maastricht University, The Netherlands
*
Please send requests for reprints to Gerard J.P. Van Breukelen, Department of Methodology and Statistics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, THE NETHERLANDS.

Abstract

This paper discusses two forms of separability of item and person parameters in the context of response time (RT) models. The first is “separate sufficiency”: the existence of sufficient statistics for the item (person) parameters that do not depend on the person (item) parameters. The second is “ranking independence”: the likelihood of the item (person) ranking with respect to RTs does not depend on the person (item) parameters. For each form a theorem stating sufficient conditions, is proved. The two forms of separability are shown to include several (special cases of) models from psychometric and biometric literature. Ranking independence imposes no restrictions on the general distribution form, but on its parametrization. An estimation procedure based upon ranks and pseudolikelihood theory is discussed, as well as the relation of ranking independence to the concept of double monotonicity.

Type
Original Paper
Copyright
Copyright © 1997 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I am indebted to Wim van der Linden for bringing Thissen's (1983) paper to my notice, and to Martijn Berger, Frans Tan, and the anonymous reviewers for their constructive comments on earlier drafts of this paper.

References

Andersen, E. B. (1973). Conditional inference and models for measuring, Copenhagen: Mental Hygiejnisk Forlag.Google Scholar
Andersen, E. B. (1977). Sufficient statistics and latent trait models. Psychometrika, 42, 6981.CrossRefGoogle Scholar
Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North-Holland.Google Scholar
Andersen, P. K. (1991). Survival analysis 1982–1991: The second decade of the proportional hazards regression model. Statistics in Medicine, 10, 19311941.CrossRefGoogle ScholarPubMed
Arnold, B. C., Strauss, D. (1988). Pseudolikelihood estimation, Riverside: University of California.Google Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores (pp. 397479). Reading, MA: Addison-Wesley.Google Scholar
Bloxom, B. (1985). Considerations in psychometric modeling of response time. Psychometrika, 50, 383397.CrossRefGoogle Scholar
Connolly, M. A., Liang, K. Y. (1988). Conditional logistic regression models for correlated binary data. Biometrika, 75, 501506.CrossRefGoogle Scholar
Cox, D. R., Oakes, D. (1984). Analysis of survival data, London: Chapman and Hall.Google Scholar
Fischer, G. H. (1974). Einführung in die Theorie psychologischer Tests [Introduction to the theory of psychological tests], Bern: Huber.Google Scholar
Fischer, G. H. (1987). Applying the principle of specific objectivity and of generalizability to the measurement of change. Psychometrika, 52, 565587.CrossRefGoogle Scholar
Fischer, G. H., Kisser, R. (1983). Notes on the exponential latency model and an empirical application. In Wainer, H., Messick, S. (Eds.), Principals of modern psychological measurement (pp. 139157). Hillsdale, NJ: Erlbaum.Google Scholar
Godambe, V. P. (1991). Estimating functions, Oxford: Clarendon Press.CrossRefGoogle Scholar
Irtel, H. (1987). On specific objectivity as a concept in measurement. In Roskam, E. E., Suck, R. (Eds.), Progress in mathematical psychology (pp. 3545). Amsterdam: North-Holland.Google Scholar
Irtel, H. (1995). An extension of the concept of specific objectivity. Psychometrika, 60, 115118.CrossRefGoogle Scholar
Kalbfleisch, J. D., Prentice, R. L. (1980). The statistical analysis of failure time data, New York: Wiley.Google Scholar
Krantz, D. H., Luce, R. D., Suppes, P., Tversky, A. (1971). Foundations of measurement, Vol. I, New York: Academic Press.Google Scholar
Lehmann, E. L. (1959). Testing statistical hypotheses, New York: Wiley.Google Scholar
Liang, K. Y., Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 1322.CrossRefGoogle Scholar
Luce, R. D. (1986). Response times: their role in inferring elementary mental organization, New York: Oxford University Press.Google Scholar
Maris, E. (1993). Additive and multiplicative models for gamma distributed random variables, and their application as psychometric models for response times. Psychometrika, 58, 445469.CrossRefGoogle Scholar
Marley, A. A. J. (1989). A random utility family that includes many of the classical models and has closed form choice probabilities and choice reaction times. British Journal of Mathematical and Statistical Psychology, 42, 1336.CrossRefGoogle Scholar
Micko, H. C. (1969). A psychological scale for reaction time measurement. Acta Psychologica, 30, 324335.CrossRefGoogle Scholar
Micko, H. C. (1970). Eine Verallgemeinerung des Meßmodells von Rasch mit einer Anwendung auf die Psychophysik der Reaktionen [A generalization of the Rasch model with an application to the psychophysics of reactions]. Psychologische Beiträge, 12, 422.Google Scholar
Mokken, R. J., Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417430.CrossRefGoogle Scholar
Mood, A. M., Graybill, F. A., Boes, D. C. (1974). Introduction to the theory of statistics 3rd ed.,, Tokyo: McGraw-Hill.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Danish Institute for Educational Research.Google Scholar
Rasch, G. (1977). On specific objectivity. An attempt at formalizing the request for generality and validity of scientific statements. In Blegvad, M. (Eds.), The Danish yearbook of philosophy, 14 (pp. 5894). Copenhagen: Muynksgaard.Google Scholar
Roskam, E. E. Ch. I., Jansen, P. G. W. (1984). A new derivation of the Rasch model. In Degreef, E., Van Buggenhout, J. (Eds.), Trends in mathematical psychology (pp. 293307). Amsterdam: Elsevier.CrossRefGoogle Scholar
Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms. Journal of Mathematical Psychology, 19, 1838.CrossRefGoogle Scholar
Scheiblechner, H. (1985). Psychometric models for speed-test construction: the linear exponential model. In Embretson, S. E. (Eds.), Test design, developments in psychology and psychometrics (pp. 219244). London: Academic Press.Google Scholar
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models. Psychometrika, 60, 281304.CrossRefGoogle Scholar
Thissen, D. (1983). Timed testing: an approach using item response theory. In Weiss, D. J. (Eds.), New horizons in testing: latent trait theory and computerized adaptive testing (pp. 179203). New York: Academic Press.Google Scholar
Tibshirani, R. (1988). Estimating transformations for regression via additivity and variance stabilization. Journal of the American Statistical Association, 83, 394405.CrossRefGoogle Scholar
Tutz, G. (1989). Latent Trait Modelle für ordinale Beobachtungen [Latent trait models for ordinal observations], Berlin: Springer.CrossRefGoogle Scholar
Van Breukelen, G. J. P. (1995). Psychometric and information processing properties of selected response time models. Psychometrika, 60, 95113.CrossRefGoogle Scholar
Van Breukelen, G. J. P. (1996). Selecting and weighting items in composite scales for assessment of physical or mental health Maastricht University, THE NETHERLANDS: Maastricht.Google Scholar
Van Breukelen, G. J. P., Roskam, E. E. Ch. I. (1991). A Rasch model for the speed-accuracy trade-off in time limited tests. In Doignon, J. P., Falmagne, J. C. (Eds.), Mathematical psychology: Current developments (pp. 251271). New York: Springer.CrossRefGoogle Scholar
Vorberg, D., Schwarz, W. (1990). Rasch-representable reaction time distributions. Psychometrika, 55, 617632.CrossRefGoogle Scholar
Vorberg, D., Ulrich, R. (1987). Random search with unequal search rates: serial and parallel generalizations of McGill's model. Journal of Mathematical Psychology, 31, 123.CrossRefGoogle Scholar
Zacks, S. (1971). The theory of statistical inference, New York: Wiley.Google Scholar
Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. Applied Psychological Measurement, 19, 369375.CrossRefGoogle Scholar