Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T16:42:12.076Z Has data issue: false hasContentIssue false

Considerations in Psychometric Modeling of Response Time

Published online by Cambridge University Press:  01 January 2025

Bruce Bloxom*
Affiliation:
Vanderbilt University
*
Requests for reprints should be sent to Bruce Btoxom, Department of Psychology, Vanderbilt University, Nashville, TN 37240.

Abstract

Semiparametric models express a set of distributions of event times in terms of (a) a single parameter which varies across distributions and (b) a single function which does not vary across distributions and which has an unspecified form. These models appear to be attractive alternatives to parametric models of response times in psychometrics. However, our use of such models may require incorporating additional functions which do not vary across distributions and may require expressing the models in terms of the joint distribution of response class and response time.

Type
Original Paper
Copyright
Copyright © 1985 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, F. G. (1982). Testing assumptions of exponential additive reaction time models. Memory and Cognition, 10, 125134.CrossRefGoogle ScholarPubMed
Audley, R. J., Pike, A. R. (1965). Some alternative stochastic models of choice. British Journal of Mathematical and Statistical Psychology, 18(2), 207225.CrossRefGoogle Scholar
Barlow, R. D., Proschan, F. (1975). Statistical theory of reliability and life testing: Probability models, New York: Holt, Rinehart & Winston.Google Scholar
Bloxom, B. (1979). Estimating an unobserved component of a serial response time model. Psychometrika, 44, 473484.CrossRefGoogle Scholar
Bloxom, B. (1983). Some problems in estimating response time distributions. In Wainer, H., Messick, S. (Eds.), Principals of modern psychological measurement: A festschrift in honor of Frederic M. Lord (pp. 303328). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Bloxom, B. (1984). Estimating response time hazard functions: An exposition and extension. Journal of Mathematical Psychology, 28, 401420.CrossRefGoogle Scholar
Bloxom, B. (1985). A constrained spline estimator of a hazard function. Psychometrika, 50, 301321.CrossRefGoogle Scholar
Bock, R. D. (1984, September). Contributions of empirical Bayes and marginal maximum likelihood principles to item response theory. Paper presented at the meeting of the XXIII International Congress of Psychology, Acapulco, Mexico.Google Scholar
Burbeck, S. L., Luce, R. D. (1982). Evidence from auditory simple reaction times for both change and level detectors. Perception and Psychophysics, 32, 117133.CrossRefGoogle ScholarPubMed
Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, 34, 187220.CrossRefGoogle Scholar
Cox, D. R., Oakes, D. (1984). Analysis of survival data, New York: Chapman and Hall.Google Scholar
Dixon, W. J., Brown, M. B., Engleman, L., Frane, J. W., Hill, M. A., Jennrich, R. I., Toporek, J. D. (1981). BMDP statistical software, Berkeley: University of California Press.Google Scholar
Embretson, S. (1983). Construct validity: Construct representation versus nomothetic span. Psychological Bulletin, 93, 179197.Google Scholar
Glaser, R. E. (1980). Bathtub and related failure rate characterizations. Journal of the American Statistical Association, 75, 667672.CrossRefGoogle Scholar
Heckman, J., Singer, B. (1984). A method for minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica, 52, 271320.CrossRefGoogle Scholar
Kalbfleisch, J. D., Prentice, R. L. (1980). The statistical analysis of failure time data, New York: Wiley.Google Scholar
Kochar, S. C. (1979). Distribution-free comparison of two probability distributions with reference to their hazard rates. Biometrika, 66, 437441.CrossRefGoogle Scholar
Kohfeld, D. L. (1984, August). Sensory-detection models of auditory and visual RT processes. Paper presented at the meeting of the Society for Mathematical Psychology, Chicago.Google Scholar
Laming, D. R. J. (1968). Information theory of choice reaction times, New York: Academic Press.Google Scholar
Laming, D. R. J. (1973). Mathematical psychology, New York: Academic Press.Google Scholar
Link, S. W. (1982). Correcting response measures for guessing and partial information. Psychological Bulletin, 92, 469486.CrossRefGoogle Scholar
Link, S. W., Heath, R. A. (1975). A sequential theory of psychological discrimination. Psychometrika, 40, 77105.CrossRefGoogle Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Lord, F. M., Novick, M. R. (1968). Statistical theories of mental test scores, Reading, MA: Addison-Wesley.Google Scholar
Luce, R. D., Green, D. M. (1972). A neural timing theory for response times and psychophysics of intensity. Psychological Review, 79, 1457.CrossRefGoogle ScholarPubMed
McCullagh, P., Nelder, J. A. (1983). Generalized linear models, New York: Chapman and Hall.CrossRefGoogle Scholar
McGill, W. J. (1963). Stochastic latency mechanisms. In Luce, R. D., Bush, R. R., Galanter, E. (Eds.), Handbook of mathematical psychology, New York: Wiley.Google Scholar
Ramsay, J. O. (1982). When the data are functions. Psychometrika, 47, 379396.CrossRefGoogle Scholar
Rao, C. R. (1965). Linear statistical inference and its applications, New York: Wiley.Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59108.CrossRefGoogle Scholar
Ratcliff, R. (1981). A theory of order relations in perceptual matching. Psychological Review, 88, 552572.CrossRefGoogle Scholar
Ratcliff, R. (1985). Theoretical interpretations of the speed and accuracy of positive and negative responses. Psychological Review, 92, 212225.CrossRefGoogle ScholarPubMed
Rice, J., Rosenblatt, M. (1983). Smoothing splines: Regression, derivatives and deconvolution. The Annals of Statistics, 11, 141156.CrossRefGoogle Scholar
Samejiima, F. (1983). A general model for the homogeneous case of the continuous response, Knoxville, TN: University of Tennessee.Google Scholar
Scheiblechner, H. (1979). Specifically objective stochastic latency mechanisms. Journal of Mathematical Psychology, 19, 1838.CrossRefGoogle Scholar
Schweikert, R. (1985). Separable effects of speed and accuracy: Memory scanning, lexical decision, and choice tasks. Psychological Bulletin, 97, 530546.CrossRefGoogle Scholar
Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. In Koster, W. G. (Eds.), Attention and performance II, Amsterdam: North-Holland.Google Scholar
Stone, M. (1960). Models for choice reaction time. Psychometrika, 25, 251260.CrossRefGoogle Scholar
Takane, Y., Sergent, J. (1983). Multidimensional scaling models for reaction times and same-different judgements. Psychometrika, 48, 393423.CrossRefGoogle Scholar
Tatsuoka, K., Tatsuoka, M. (1979). A model for incorporating response-time data in scoring achievement tests, Urbana, IL: University of Illinois, Computer-based Education Research Laboratory.Google Scholar
Thissen, D. (1983). Timed testing: An approach using item response theory. In Weiss, D. J. (Eds.), New horizons in testing: Latent trait test theory and computerized adaptive testing, New York: Academic Press.Google Scholar
Thissen, D., Steinberg, L. (1984). A response model for multiple choice items. Psychometrika, 49, 501519.CrossRefGoogle Scholar
Thomas, E. A. C. (1971). Sufficient conditions for monotone hazard rate. Journal of Mathematical Psychology, 8, 303332.CrossRefGoogle Scholar
Tien, J. Y., & Ashby, F. G. (1985, May). Hazard function in choice reaction time. Paper presented at the meeting of the Midwestern Psychological Association, Chicago.Google Scholar
Torgerson, W. S. (1958). Theory and methods of scaling, New York: John Wiley & Sons.Google Scholar
Townsend, J. T., Ashby, F. G. (1978). Methods of modelling capacity in simple processing systems. In Castellan, N. J., Restle, F. (Eds.), Cognitive theory 3, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Townsend, J. T., Ashby, F. G. (1983). On the stochastic modelling of elementary psychological processes, Cambridge: Cambridge University Press.Google Scholar
Zinnes, J. L., Wolff, R. P. (1977). Single and multidimensional same-different judgments. Journal of Mathematical Psychology, 16, 3050.CrossRefGoogle Scholar