We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favor of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that seems to necessitate the addition of sets to V. We argue that, despite the prima facie incoherence of such talk for the Universist, she nonetheless has reason to try and provide interpretation of this discourse. We present a method of interpreting extension-talk (V-logic), and show how it captures satisfaction in ‘ideal’ outer models and relates to impredicative class theories. We provide some reasons to regard the technique as philosophically virtuous, and argue that it opens new doors to philosophical and mathematical discussions for the Universist.
We characterize the determinacy of
$F_\sigma $
games of length
$\omega ^2$
in terms of determinacy assertions for short games. Specifically, we show that
$F_\sigma $
games of length
$\omega ^2$
are determined if, and only if, there is a transitive model of
${\mathsf {KP}}+{\mathsf {AD}}$
containing
$\mathbb {R}$
and reflecting
$\Pi _1$
facts about the next admissible set.
As a consequence, one obtains that, over the base theory
${\mathsf {KP}} + {\mathsf {DC}} + ``\mathbb {R}$
exists,” determinacy for
$F_\sigma $
games of length
$\omega ^2$
is stronger than
${\mathsf {AD}}$
, but weaker than
${\mathsf {AD}} + \Sigma _1$
-separation.
Suppose that $k_0\geq 3.5\times 10^6$ and $\mathcal{H}=\{h_1,\ldots,h_{k_0}\}$ is admissible. Then, for any $m\geq 1$, the set $\{m(h_j-h_i):\, h_i<h_j\}$ contains at least one Polignac number.
Local models are schemes, defined in terms of linear-algebraic moduli problems, which
are used to model the étale-local structure of integral models of certain $p$-adic PEL Shimura varieties defined by Rapoport and Zink. In the
case of a unitary similitude group whose localization at ${ \mathbb{Q} }_{p} $ is ramified, quasi-split $G{U}_{n} $, Pappas has observed that the original local models are typically
not flat, and he and Rapoport have introduced new conditions to the original moduli
problem which they conjecture to yield a flat scheme. In a previous paper, we proved
that their new local models are topologically flat when $n$ is odd. In the present paper, we prove topological flatness when $n$ is even. Along the way, we characterize the $\mu $-admissible set for certain cocharacters $\mu $ in types $B$ and $D$, and we show that for these cocharacters admissibility can be
characterized in a vertexwise way, confirming a conjecture of Pappas and
Rapoport.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.