We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bitter gourd is a highly nutritious vegetable and important medicinal plant of economic importance. The present study is focused on cytogenetical characterization of 12 accessions of bitter gourd from different parts of India, aiming to differentiate their karyotypes and outline diagnostic features of the chromosomes within each accession's haploid complement. All the accessions possess 2n = 22 numbers of chromosomes. The chromosomes mainly were metacentric (16‒22 chromosomes), and the presence or absence of sub-metacentric (0‒6 chromosomes) chromosomes. The length of the chromosomes varied from 0.83 to 1.93 μm among the accessions studied. Significant differences were obtained for the seven intra-chromosomal indices and four inter-chromosomal indices among the accessions. Principal component analysis and unweighted pair group method with arithmetic mean study revealed relatively distant positioning of individuals that advocated intraspecific phylogenetic relationships and higher karyoevolutionary affinity in bitter gourd accessions. In the meiotic study, regular meiotic behaviour indicates genetic stability and a stable sexual cycle in different accessions. The percentage of pollen viability of all the studied accessions was very high (89.41–94.11%), and these accessions can be considered to be good pollinators. The results obtained will guide characterizing the elite genotypes, genotypes management and designing effective breeding programmes and crop improvement programmes.
In 2011, the Istanbul Consensus Workshop on Embryo Assessment by the Alpha Scientists in Reproductive Medicine and the European Society of Human Reproduction and Embryology (ESHRE) Special Interest Group in Embryology simplified pronuclear scoring by assigning one of three classifications: symmetrical, asymmetrical and abnormal.
The aim was to study the effect of the threshold number on the accuracy of genomic evaluation of the threshold traits using support vector machine (SVM), genomic best linear unbiased prediction (GBLUP) and Bayesian method B (BayesB). For this purpose, a genome consisting of three chromosomes was simulated for 1000 individuals on which 3000 bi-allelic single nucleotide polymorphism markers were evenly distributed. Genomic breeding values were predicted in different scenarios of threshold number (1–6 thresholds), QTL number (30 and 300 QTLs) and heritability level (0.1, 0.3 and 0.5). By increasing the number of thresholds from 1 to 6 thresholds, especially at higher levels of heritability, the accuracy of genomic evaluation increased; however, the increase in accuracy was not linear so that it was much more noticeable when the number of thresholds increased from 1 to 2 thresholds. In the most studied scenarios, SVM showed a very poor performance compared to other methods. BayesB ranked first regarding prediction accuracy, though in some cases the observed differences with GBLUP was not significant. While increase in heritability increased the accuracy of genomic evaluation, change in the QTL number had a slight effect on the prediction accuracy. According to the results, the SVM is not recommended for genomic evaluation of threshold traits, especially those which have only one threshold and instead, use of GBLUP and BayesB is recommended. For traits with more than one threshold, fortunately we can achieve accuracy similar to continuous traits by applying traditional genomic evaluation methods.
Evolution is responsible for all biological diversity on earth, so it is critical that the students understand precisely what evolution is and how we know that evolution is a fact. In this chapter the four causes of evolutionary change in populations are reviewed in some detail, relying partially on the lessons on genetics in Chapter 5. It particularly emphasizes evidence in the modern world for evolution, such as the evolution of antibiotic-resistant strains of bacteria, but also patterns seen in extant vertebrates documented in locations of significant environmental change over the last 200 years. This chapter also reviews the history of the discovery of evolution, and the intellectual antecedents that allowed Darwin to make his inference. It explores the appearance of the scientific worldview during the Renaissance and Enlightenment and how that worldview challenged (and continues to challenge) some religious and secular authorities.
Forensic DNA typing was developed to improve our ability to conclusively identify an individual and distinguish that person from all others. Current DNA profiling techniques yield incredibly rare types, but definitive identification of one and only one individual using a DNA profile remains impossible. This fact may surprise you, as there is a popular misconception that a DNA profile is unique to an individual, with the exception of identical twins. You may be the only person in the world with your DNA profile, but we cannot know this short of typing everyone. What we can do is calculate probabilities. The result of a DNA profile translates into the probability that a person selected at random will have that same profile. In most cases, this probability is astonishingly tiny. Unfortunately, this probability is easily misinterpreted, a situation we will see and discuss many times in the coming chapters.
What are genes? What do genes do? These questions are not simple and straightforward to answer; at the same time, simplistic answers are quite prevalent and are taken for granted. This book aims to explain the origin of the gene concept, its various meanings both within and outside science, as well as to debunk the intuitive view of the existence of 'genes for' characteristics and disease. Drawing on contemporary research in genetics and genomics, as well as on ideas from history of science, philosophy of science, psychology and science education, it explains what genes are and what they can and cannot do. By presenting complex concepts and research in a comprehensible and rigorous manner, it examines the potential impact of research in genetics and genomics and how important genes actually are for our lives. Understanding Genes is an accessible and engaging introduction to genes for any interested reader.
To understand what genes “do,” we have to consider what happens during development. The first and most striking evidence that the local environment matters for the outcome of development was provided by the experiments of embryologists Wilhelm Roux and Hans Driesch in the late nineteenth and early twentieth centuries. Roux had hypothesized that during the cell divisions of the embryo, hereditary particles were unevenly distributed in its cells, thus driving their differentiation. This view entailed that even the first blastomeres (the cells emerging from the first few divisions of the zygote – that is, the fertilized ovum) would each have different hereditary material and that the embryo would thus become a kind of mosaic. Roux decided to test this hypothesis. He assumed that if it were true, destroying a blastomere in the two-cell or the four-cell stage would produce a partially deformed embryo. If it were not true, then the destruction of a blastomere would have no effect. With a hot sterilized needle, Roux punctured one of the blastomeres in a two-cell frog embryo that was thus killed. The other blastomere was left to develop. The outcome was a half-developed embryo; the part occupied by the punctured blastomere was highly disorganized and undifferentiated, whereas those cells resulting from the other blastomere were well-developed and partially differentiated. This result stood as confirmation for Roux’s hypothesis.
During the 1970s, more puzzling observations were made. The first was that the genome of animals contained large amounts of DNA with unique sequences that should correspond to a larger number of genes than anticipated. It was also observed that the RNA molecules in the nuclei of cells were much longer than those found outside the nucleus, in the cytoplasm. These observations started making sense in 1977, when sequences of mRNA were compared to the corresponding DNA sequences. It was shown that certain sequences that existed in the DNA did not exist in the mRNA, and that therefore they must have been somehow removed. It was thus concluded that the genes encoding various proteins in eukaryotes included both coding sequences and ones that were not included in the mRNA that would reach the ribosomes for translation. These “removed” sequences were called introns, to contrast them with the ones that were expressed in translation, which were called exons. The procedure that removed the intron sequences from the initial mRNA and that left only the exon sequences in the mature mRNA was named “RNA splicing.”
One important, and for some the most surprising, conclusion of genome-wide association studies (GWAS) has been that in most cases numerous single nucleotide polymorphism (SNPs) in several genes were found to be associated with the development of a characteristic or the risk of developing a disease. As already mentioned, the main conclusion has been that the relationship between genes and characteristics or diseases is usually a many-to-many one, as many genes may be implicated in the same condition, and the same gene may be implicated in several different conditions. In fact, the same allele may be protective for one disease but increase the risk for another. For example, a variation in the PTPN22 (protein tyrosine phosphatase, nonreceptor type 22) gene on chromosome 1 seems to protect against Crohn’s disease but to predispose to autoimmune diseases. In other cases, certain variants are associated with more than one disease, such as the JAZF1 (JAZF1 zinc finger 1) gene on chromosome 7 that is implicated in prostate cancer and in type 2 diabetes. Therefore, we should forget the simple scheme of gene 1 → condition 1/gene 2 → condition 2, and adopt a richer – and certainly more complicated – representation of the relationship between genes and disease. Additional GWAS on more variants in larger populations might provide a better picture in the future. But insofar as we do not understand all biological processes in detail, all we are left with are probabilistic associations between genes and characteristics (or diseases). The “associated gene” may be informative, but its explanatory potential and clinical value are limited – at least for now.
This chapter is about the public image of genes. But what exactly do we mean by “public”? Here, I use the word as a noun or an adjective vaguely, in order to refer to all ordinary people who are not experts in genetics. I thus contrast them with scientists who are experts in genetics – that is, who have mastered genetics-related knowledge and skills, who practice these as their main occupation, and who have valid genetics-related credentials, confirmed experience, and affirmation by their peers. I must note that both “experts” and “the public” are complex categories that depend on the context and that change over time. There is no single group of nonexperts that we can define as “the” public, as people around the world differ in their perceptions of science, depending on their cultural contexts. We had therefore better refer to “publics.” The differences among experts nowadays might be less significant than those among nonexperts, given today’s global scientific communities, but they do exist. Finally, both the categories of experts and publics have changed across time, depending, on the one hand, on the level of experts’ knowledge and understanding of the natural world, and, on the other hand, on publics’ attitudes toward that knowledge and understanding.
If you were taught Mendelian genetics at school (see Figures 2.1 and 2.2) you should be aware that it is an oversimplified model that does not work for most cases of inherited characteristics. Human eye color is a textbook example of a monogenic characteristic. It refers to the color of the iris – the colored circle in the middle of the eye. The iris comprises two tissue layers, an inner one called the iris pigment epithelium and an outer one called the anterior iridial stroma. It is the density and cellular composition of the latter that mostly affects the color of the iris. The melanocyte cells of the anterior iridial stroma store melanin in organelles called melanosomes. White light entering the iris can absorb or reflect a spectrum of wavelengths, giving rise to the three common iris colors (blue, green–hazel, and brown) and their variations. Blue eyes contain minimal pigment levels and melanosome numbers; green–hazel eyes have moderate pigment levels and melanosome numbers; and brown eyes are the result of high melanin levels and melanosome numbers. Textbook accounts often explain that a dominant allele B is responsible for brown color, whereas a recessive allele b is responsible for blue color (Figure 4.1). According to such accounts, parents with brown eyes can have children with blue eyes, but it is not possible for parents with blue eyes to have children with brown eyes. This pattern of inheritance was first described at the beginning of the twentieth century and it is still taught in schools, although it became almost immediately evident that there were exceptions, such as that two parents with blue eyes could have offspring with brown or dark hazel eyes.
Perhaps you were taught at school that genetics began with Gregor Mendel. Because of his experiments with peas, Mendel is considered to be a pioneer of genetics and the person who discovered the laws of heredity. According to the model of “Mendelian inheritance,” things are rather simple and straightforward with inherited characteristics. Some alleles are dominant – that is, they impose their effects on other alleles that are recessive. An individual who carries two recessive alleles exhibits the respective “recessive” characteristic, whereas a single dominant allele is sufficient for the “dominant” version of the characteristic to appear. In this sense, particular genes determine particular characteristics (e.g., seed color in peas), and particular alleles of those genes determine particular versions of the respective characteristics. Mendel, the story goes, discovered that characteristics are controlled by hereditary factors, the inheritance of which follows two laws: the law of segregation and the law of independent assortment.
The structural details of chromosomes have been of interest to researchers for many years, but how the metaphase chromosome is constructed remains unsolved. Divalent cations have been suggested to be required for the organization of chromosomes. However, detailed information about the role of these cations in chromosome organization is still limited. In the current study, we investigated the effects of Ca2+ and Mg2+ depletion and the reversibility upon re-addition of one of the two ions. Human chromosomes were treated with different concentrations of Ca2+and Mg2+. Depletion of Ca2+ and both Ca2+ and Mg2+ were carried out using 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and ethylenediaminetetraacetic acid (EDTA), respectively. Chromosome structure was examined by fluorescence microscopy and scanning electron microscopy. The results indicated that chromosome structures after treatment with a buffer without Mg2+, after Ca2+ depletion, as well as after depletion of both Mg2+, and Ca2+, yielded fewer compact structures with fibrous chromatin than those without cation depletion. Interestingly, the chromatin of EDTA-treated chromosomes reversed to their original granular diameters after re-addition of either Mg2+ or Ca2+ only. These findings signify the importance of divalent cations on the chromosome structure and suggest the interchangeable role of Ca2+ and Mg2+.
Early detection of karyotype abnormalities, including aneuploidy, could aid producers in identifying animals which, for example, would not be suitable candidate parents. Genome-wide genetic marker data in the form of single nucleotide polymorphisms (SNPs) are now being routinely generated on animals. The objective of the present study was to describe the statistics that could be generated from the allele intensity values from such SNP data to diagnose karyotype abnormalities; of particular interest was whether detection of aneuploidy was possible with both commonly used genotyping platforms in agricultural species, namely the Applied BiosystemsTM AxiomTM and the Illumina platform. The hypothesis was tested using a case study of a set of dizygotic X-chromosome monosomy 53,X sheep twins. Genome-wide SNP data were available from the Illumina platform (11 082 autosomal and 191 X-chromosome SNPs) on 1848 male and 8954 female sheep and available from the AxiomTM platform (11 128 autosomal and 68 X-chromosome SNPs) on 383 female sheep. Genotype allele intensity values, either as their original raw values or transformed to logarithm intensity ratio (LRR), were used to accurately diagnose two dizygotic (i.e. fraternal) twin 53,X sheep, both of which received their single X chromosome from their sire. This is the first reported case of 53,X dizygotic twins in any species. Relative to the X-chromosome SNP genotype mean allele intensity values of normal females, the mean allele intensity value of SNP genotypes on the X chromosome of the two females monosomic for the X chromosome was 7.45 to 12.4 standard deviations less, and were easily detectable using either the AxiomTM or Illumina genotype platform; the next lowest mean allele intensity value of a female was 4.71 or 3.3 standard deviations less than the population mean depending on the platform used. Both 53,X females could also be detected based on the genotype LRR although this was more easily detectable when comparing the mean LRR of the X chromosome of each female to the mean LRR of their respective autosomes. On autopsy, the ovaries of the two sheep were small for their age and evidence of prior ovulation was not appreciated. In both sheep, the density of primordial follicles in the ovarian cortex was lower than normally found in ovine ovaries and primary follicle development was not observed. Mammary gland development was very limited. Results substantiate previous studies in other species that aneuploidy can be readily detected using SNP genotype allele intensity values generally already available, and the approach proposed in the present study was agnostic to genotype platform.
Genome assemblies can form the basis of comparative analyses fostering insight into the evolutionary genetics of a parasite's pathogenicity, host–pathogen interactions, environmental constraints and invasion biology; however, the length and complexity of many parasite genomes has hampered the development of well-resolved assemblies. In order to improve Trichinella genome assemblies, the genome of the sylvatic encapsulated species Trichinella murrelli was sequenced using third-generation, long-read technology and, using syntenic comparisons, scaffolded to a reference genome assembly of Trichinella spiralis, markedly improving both. A high-quality draft assembly for T. murrelli was achieved that totalled 63·2 Mbp, half of which was condensed into 26 contigs each longer than 571 000 bp. When compared with previous assemblies for parasites in the genus, ours required 10-fold fewer contigs, which were five times longer, on average. Better assembly across repetitive regions also enabled resolution of 8 Mbp of previously indeterminate sequence. Furthermore, syntenic comparisons identified widespread scaffold misassemblies in the T. spiralis reference genome. The two new assemblies, organized for the first time into three chromosomal scaffolds, will be valuable resources for future studies linking phenotypic traits within each species to their underlying genetic bases.
We determined the relationship between aortic arch anatomy in tetralogy of Fallot with pulmonary stenosis and chromosomal or genetic abnormality, by performing analysis of 257 consecutive patients undergoing surgical repair from January, 2003 to March, 2011. Chromosomal or genetic abnormality was identified in 49 of the 257 (19%) patients. These included trisomy 21 (n = 14); chromosome 22q11.2 deletion (n = 16); other chromosomal abnormalities (n = 9); CHARGE (n = 2); Pierre Robin (n = 2); and Kabuki, Alagille, Holt–Oram, Kaufman McKusick, Goldenhar, and PHACE (n = 1 each). Aortic anatomy was classified as left arch with normal branching, right arch with mirror image branching, left arch with aberrant right subclavian artery, or right arch with aberrant left subclavian artery. Associated syndromes occurred in 33 of 203 (16%) patients with left arch and normal branching (odds ratio 1); three of 36 (8%) patients with right arch and mirror image branching (odds ratio 0.4, 95% confidence interval 0.1–1.6); seven of eight (88%) patients with left arch and aberrant right subclavian artery (odds ratio 36, 95% confidence interval 4–302); and six of 10 (60%) patients with right arch and aberrant left subclavian artery (odds ratio 8, 95% confidence interval 2–26). Syndromes were present in 13 of 18 (72%) patients with either right or left aberrant subclavian artery (odds ratio 15, 95% confidence interval 4–45). Syndromes in patients with an aberrant subclavian artery included trisomy 21 (n = 4); chromosome 22q11.2 deletion (n = 5); and Holt–Oram, PHACE, CHARGE, and chromosome 18p deletion (n = 1 each). Aberrant right or left subclavian artery in tetralogy of Fallot with pulmonary stenosis is associated with an increased incidence of chromosomal or genetic abnormality, whereas right aortic arch with mirror image branching is not. The assessment of aortic arch anatomy at prenatal diagnosis can assist counselling.
Genetic analyses which are relevant to plant and animal studies, rather than human populations, have specific limitations in relation to the genetics of schizophrenia. Some reviewers of family studies of schizophrenia have drawn the conclusion that schizophrenia and bipolar disorder do not share the same genetic etiologies whereas others argue that they often do. Considerable effort has been focused on genetic linkage analysis of schizophrenia employing genetic markers in multiply affected families to identify which chromosomal regions harbor susceptibility genes. This approach must take into account the complication of heterogeneity of linkage in which a number of susceptibility genes localized to different chromosomes contribute to the development of schizophrenia. The chapter describes a selection of genes that have been implicated in susceptibility to schizophrenia by cytogenetic, linkage and/or association studies. Twin and adoption studies have shown that the family environment has no influence on the etiology of schizophrenia.
The human leukocyte antigen (HLA) gene cluster in chromosome 6p21.3 represents by far the strongest multiple sclerosis (MS) susceptibility locus genome-wide, explaining approximately 7%-10% of the total (genetic and non-genetic) variance. Two main biological issues contributed to thwart gene discovery efforts in MS. First, the effect attributable to each individual allelic variant is modest. Second, the true signals need to be isolated from the abundant genetic variation that characterizes the human population as a whole, leading to the inescapable conclusion that the discovery of genes influencing MS risk must rely primarily on very large patient datasets and well-matched controls. Concordance in families for some clinical metrics such as severity or age-of-onset suggests that genes modestly influence disease trajectory and course. High throughput methods of analysis have enabled the characterization of gene expression signatures characteristic of the disease and multiple efforts are underway to identify biomarkers of therapeutic response.
The F1 hybrid offspring of the distant hybridization between Cichlasoma trimaculatum (male) and Heros managuense (female) were successfully obtained through artificial fertilization, and the chromosome specimen of kidney cells of the two parents and their offspring were prepared using a low colchicine concentration air drying method, Howell and Black's (1980)
silver–nucleolar organizer region (Ag–NOR) staining method and Sumner's (1972)
C-band staining method. The karyotypes, Ag–NORs and C-bands of C. trimaculatum, H. managuense and their offspring were observed. The results showed that the diploid numbers of the two parents and the F1 hybrid offspring were all 2n=48. For C. trimaculatum, the karyotype formula was 2n=2m+8sm+26st+12t, NF=58. Two Ag–NORs were seen on the tips of the short arm of chromosome st7, and the entire chromosomes of st9 and st13 and the centromeres of the other chromosomes had positive C-bands. For H. managuense, the karyotype formula was 2n=2m+6sm+28st+12t, NF=56. Two Ag–NORs were located on the tips of the short arm of chromosome sm2 and positive C-bands were found in the centromere of all chromosomes. In the F1 hybrid offspring, the chromosome formula was 2n=2m+8sm+30st+8t, NF=58. Two Ag–NORs were seen on the tips of the short arm of chromosome sm2; all chromosomes presented positive C-bands in the centromere. No heteromorphic sex chromosome was found. After comparison with the two parents, the F1 hybrid offspring was suggested to be the filial generation of the two hybrid parents rather than the gynogenesis of H. managuense induced by heterogeneous sperm of C. trimaculatum.
The aim of our study was to analyse chromosomal aneuploidy occurence in rabbit oocytes and embryos. Chromosomal analysis was done in rabbit oocytes and rabbit preimplantation embryos at 2-, 4- and 8-cell stages derived from in vivo fertilization. For mitotic cycle synchronization at the metaphase stage, 2-, 4- and 8-cell embryos were incubated in k-DMEM medium, supplemented with colcemid (1 μg/ml), for 7, 12 or 13h respectively. Success of metaphase synchronization was at values of 100, 86.1 and 92.2% for 2-, 4- and 8-cell embryos respectively. Recovery rate of analysable metaphase plates was reached at 58.8%, 83.9% and 59.8% for 2-, 4- and 8-cell embryos and 100% for oocytes. Significant difference (p < 0.01) in aneuploidy rate between oocytes (40.7%) and 2-cell embryos (62.5%) was found. These results demonstrate higher efficiency of synchronization of embryo cells at the metaphase stage, what may contribute to elevating the proportion of analysable nuclei.