This paper is on conditioned weak limit theorems for imbedded waiting-time processes of an M/G/1 queue. More specifically we study functional limit theorems for the actual waiting-time process conditioned by the event that the number of customers in a busy period exceeds n or equals n. Attention is also paid to the actual waiting-time process with random time index.
Combined with the existing literature on the subject this paper gives a complete account of the conditioned limit theorems for the actual waiting-time process of an M/G/1 queue for arbitrary traffic intensity and for a rather general class of service-time distributions.
The limit processes that occur are Brownian excursion and meander, while in the case of random time index also the following limit occurs: Brownian excursion divided by an independent and uniform (0, 1) distributed random variable.