We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the following problem: For which Tychonoff spaces $X$ do the free topological group $F(X)$ and the free abelian topological group $A(X)$ admit a quotient homomorphism onto a separable and nontrivial (i.e., not finitely generated) group? The existence of the required quotient homomorphisms is established for several important classes of spaces $X$, which include the class of pseudocompact spaces, the class of locally compact spaces, the class of $\unicode[STIX]{x1D70E}$-compact spaces, the class of connected locally connected spaces, and some others.
We also show that there exists an infinite separable precompact topological abelian group $G$ such that every quotient of $G$ is either the one-point group or contains a dense non-separable subgroup and, hence, does not have a countable network.
For a Tychonoff space $X$, let $\mathbb{V}(X)$ be the free topological vector space over $X$, $A(X)$ the free abelian topological group over $X$ and $\mathbb{I}$ the unit interval with its usual topology. It is proved here that if $X$ is a subspace of $\mathbb{I}$, then the following are equivalent: $\mathbb{V}(X)$ can be embedded in $\mathbb{V}(\mathbb{I})$ as a topological vector subspace; $A(X)$ can be embedded in $A(\mathbb{I})$ as a topological subgroup; $X$ is locally compact.
We prove that every (locally) contractible topological group is (L)EC and apply these results to homeomorphism groups, free topological groups, reduced products and symmetric products. Our main results are: The free topological group of a θ-contractible space is equiconnected. A paracompact and weakly locally contractible space is locally equiconnected if and only if it has a local mixer. There exist compact metric contractible spaces X whose reduced (symmetric) products are not retracts of the Graev free topological groups F(X) (A(X)) (thus correcting results we published ibidem).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.