We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although clozapine is the most efficacious medication for treatment-refractory schizophrenia, not all patients will have an adequate response. Optimising clozapine dose using therapeutic drug monitoring could therefore maximise response.
Aims
Using individual patient data, we undertook a receiver operating characteristic (ROC) curve analysis to determine an optimal therapeutic range for clozapine levels to guide clinical practice.
Method
We conducted a systematic review of PubMed, PsycINFO and Embase for studies that provided individual participant level data on clozapine levels and response. These data were analysed using ROC curves to determine the prediction performance of plasma clozapine levels for treatment response.
Results
We included data on 294 individual participants from nine studies. ROC analysis yielded an area under the curve of 0.612. The clozapine level at the point of optimal diagnostic benefit was 372 ng/mL; at this level, the response sensitivity was 57.3%, and specificity 65.7%. The interquartile range for treatment response was 223–558 ng/mL. There was no improvement in ROC performance with mixed models including patient gender, age or length of trial. Clozapine dose and clozapine concentration to dose ratio did not provide significantly meaningful prediction of response to clozapine.
Conclusions
Clozapine dose should be optimised based on clozapine therapeutic levels. We found that a range between 250 and 550 ng/mL could be recommended, while noting that a level of >350 ng/mL is the most optimal for response. Although some patients may not respond without clozapine levels >550 ng/mL, the benefits should be weighed against the increased risk of adverse drug reactions.
To determine whether age, gender and marital status are associated with prognosis for adults with depression who sought treatment in primary care.
Methods
Medline, Embase, PsycINFO and Cochrane Central were searched from inception to 1st December 2020 for randomised controlled trials (RCTs) of adults seeking treatment for depression from their general practitioners, that used the Revised Clinical Interview Schedule so that there was uniformity in the measurement of clinical prognostic factors, and that reported on age, gender and marital status. Individual participant data were gathered from all nine eligible RCTs (N = 4864). Two-stage random-effects meta-analyses were conducted to ascertain the independent association between: (i) age, (ii) gender and (iii) marital status, and depressive symptoms at 3–4, 6–8,<Vinod: Please carry out the deletion of serial commas throughout the article> and 9–12 months post-baseline and remission at 3–4 months. Risk of bias was evaluated using QUIPS and quality was assessed using GRADE. PROSPERO registration: CRD42019129512. Pre-registered protocol https://osf.io/e5zup/.
Results
There was no evidence of an association between age and prognosis before or after adjusting for depressive ‘disorder characteristics’ that are associated with prognosis (symptom severity, durations of depression and anxiety, comorbid panic disorderand a history of antidepressant treatment). Difference in mean depressive symptom score at 3–4 months post-baseline per-5-year increase in age = 0(95% CI: −0.02 to 0.02). There was no evidence for a difference in prognoses for men and women at 3–4 months or 9–12 months post-baseline, but men had worse prognoses at 6–8 months (percentage difference in depressive symptoms for men compared to women: 15.08% (95% CI: 4.82 to 26.35)). However, this was largely driven by a single study that contributed data at 6–8 months and not the other time points. Further, there was little evidence for an association after adjusting for depressive ‘disorder characteristics’ and employment status (12.23% (−1.69 to 28.12)). Participants that were either single (percentage difference in depressive symptoms for single participants: 9.25% (95% CI: 2.78 to 16.13) or no longer married (8.02% (95% CI: 1.31 to 15.18)) had worse prognoses than those that were married, even after adjusting for depressive ‘disorder characteristics’ and all available confounders.
Conclusion
Clinicians and researchers will continue to routinely record age and gender, but despite their importance for incidence and prevalence of depression, they appear to offer little information regarding prognosis. Patients that are single or no longer married may be expected to have slightly worse prognoses than those that are married. Ensuring this is recorded routinely alongside depressive ‘disorder characteristics’ in clinic may be important.
This study aimed to investigate general factors associated with prognosis regardless of the type of treatment received, for adults with depression in primary care.
Methods
We searched Medline, Embase, PsycINFO and Cochrane Central (inception to 12/01/2020) for RCTs that included the most commonly used comprehensive measure of depressive and anxiety disorder symptoms and diagnoses, in primary care depression RCTs (the Revised Clinical Interview Schedule: CIS-R). Two-stage random-effects meta-analyses were conducted.
Results
Twelve (n = 6024) of thirteen eligible studies (n = 6175) provided individual patient data. There was a 31% (95%CI: 25 to 37) difference in depressive symptoms at 3–4 months per standard deviation increase in baseline depressive symptoms. Four additional factors: the duration of anxiety; duration of depression; comorbid panic disorder; and a history of antidepressant treatment were also independently associated with poorer prognosis. There was evidence that the difference in prognosis when these factors were combined could be of clinical importance. Adding these variables improved the amount of variance explained in 3–4 month depressive symptoms from 16% using depressive symptom severity alone to 27%. Risk of bias (assessed with QUIPS) was low in all studies and quality (assessed with GRADE) was high. Sensitivity analyses did not alter our conclusions.
Conclusions
When adults seek treatment for depression clinicians should routinely assess for the duration of anxiety, duration of depression, comorbid panic disorder, and a history of antidepressant treatment alongside depressive symptom severity. This could provide clinicians and patients with useful and desired information to elucidate prognosis and aid the clinical management of depression.
Improvement in depression within the first 2 weeks of antidepressant treatment predicts good outcomes, but non-improvers can still respond or remit, whereas improvers often do not.
Aims
We aimed to investigate whether early improvement of individual depressive symptoms better predicts response or remission.
Method
We obtained individual patient data of 30 trials comprising 2184 placebo-treated and 6058 antidepressant-treated participants. Primary outcome was week 6 response; secondary outcomes were week 6 remission and week 12 response and remission. We compared models that only included improvement in total score by week 2 (total improvement model) with models that also included improvement in individual symptoms.
Results
For week 6 response, the area under the receiver operating characteristic curve and negative and positive predictive values of the total improvement model were 0.73, 0.67 and 0.74 compared with 0.77, 0.70 and 0.71 for the item improvement model. Model performance decreased for week 12 outcomes. Of predicted non-responders, 29% actually did respond by week 6 and 43% by week 12, which was decreased from the baseline (overall) probabilities of 51% by week 6 and 69% by week 12. In post hoc analyses with continuous rather than dichotomous early improvement, including individual items did not enhance model performance.
Conclusions
Examining individual symptoms adds little to the predictive ability of early improvement. Additionally, early non-improvement does not rule out response or remission, particularly after 12 rather than 6 weeks. Therefore, our findings suggest that routinely adapting pharmacological treatment because of limited early improvement would often be premature.