We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If X is a topological space and Y is any set, then we call a family $\mathcal {F}$ of maps from X to Y nowhere constant if for every non-empty open set U in X there is $f \in \mathcal {F}$ with $|f[U]|> 1$, i.e., f is not constant on U. We prove the following result that improves several earlier results in the literature.
If X is a topological space for which $C(X)$, the family of all continuous maps of X to $\mathbb {R}$, is nowhere constant and X has a $\pi $-base consisting of connected sets then X is $\mathfrak {c}$-resolvable.
We consider a locally path-connected compact metric space K with finite first Betti number
$\textrm {b}_1(K)$
and a flow
$(K, G)$
on K such that G is abelian and all G-invariant functions
$f\,{\in}\, \textrm{C}(K)$
are constant. We prove that every equicontinuous factor of the flow
$(K, G)$
is isomorphic to a flow on a compact abelian Lie group of dimension less than
${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$
. For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map
$p\colon K\to L$
between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice
$\textrm {C}(K)$
.
A space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension if $Y\setminus X$ is a singleton. Compact extensions are called compactifications and connected extensions are called connectifications. It is well known that every locally compact noncompact space has a one-point compactification (known as the Alexandroff compactification) obtained by adding a point at infinity. A locally connected disconnected space, however, may fail to have a one-point connectification. It is indeed a long-standing question of Alexandroff to characterize spaces which have a one-point connectification. Here we prove that in the class of completely regular spaces, a locally connected space has a one-point connectification if and only if it contains no compact component.
A continuumis said to be Suslinian if it does not contain uncountably many mutually exclusive nondegenerate subcontinua. We prove that Suslinian continua are perfectly normal and rim-metrizable. Locally connected Suslinian continua have weight atmost ${{\omega }_{1}}$ and under appropriate set-theoretic conditions are metrizable. Non-separable locally connected Suslinian continua are rim-finite on some open set.
This paper introduces the concept of an almost locally connected space. Every locally connected space is almost locally connected, and the concepts are equivalent in the class of semi-regular spaces. Almost local connectedness is hereditary for regular open subspaces, is preserved by continuous open maps, but not generally by quotient maps. It is productive in the presence of almost-regularity.
A space Z is said to have the complete invariance property (CIP) provided that every nonempty closed subset of Z is the fixed point set of some continuous self-mapping of Z. In this paper it is shown that there exists a one-dimensional contractible planar continuum having CIP whose wedge with itself at a specified point is contractible, planar, and does not have CIP.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.