Published online by Cambridge University Press: 09 January 2015
A space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension if $Y\setminus X$ is a singleton. Compact extensions are called compactifications and connected extensions are called connectifications. It is well known that every locally compact noncompact space has a one-point compactification (known as the Alexandroff compactification) obtained by adding a point at infinity. A locally connected disconnected space, however, may fail to have a one-point connectification. It is indeed a long-standing question of Alexandroff to characterize spaces which have a one-point connectification. Here we prove that in the class of completely regular spaces, a locally connected space has a one-point connectification if and only if it contains no compact component.