We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter is a gentle introduction to the theory of strongly continuous semigroups of operators. We present the notion of the generator, discuss the generator’s basic properties and study a number of examples. We learn that the way to discover whether a given operator is a semigroup generator is by examining the resolvent equation, and are thus naturally led to the Hille–Yosida–Feller–Phillips–Miyadera theorem that characterizes generators in terms of resolvents. Two valuable consequences, the generation theorems for maximal dissipative operators in Hilbert space and operators satisfying the positive-maximum principle in the space of continuous function, are also explained. This material is supplemented with three theorems on the generation of positive semigroups. The reader of this book, however, will undoubtedly have noticed that the whole theory would have failed were it not for the fact that we are working in Banach spaces; without the assumption of completeness, we could not be sure that the Yosida approximation converges, and the entire reasoning would have collapsed.
where $-\left (\Delta +\lambda \right )^{\frac {\alpha }{2}}$ is a tempered fractional operator with $\alpha \in (0,2)$ and $\lambda $ is a sufficiently small positive constant. We first establish maximum principle principles for problems involving tempered fractional parabolic operators. And then, we develop the direct sliding methods for the tempered fractional parabolic problem, and discuss how they can be used to establish monotonicity results of solutions to the tempered fractional parabolic problem in various domains. We believe that our theory and methods can be conveniently applied to study parabolic problems involving other nonlocal operators.
This chapter is a collection of facts, ideas, and techniques regarding the analysis of boundary value, initial and initial boundary value problems for partial differential equations. We begin by deriving some of the representative equations of mathematical physics, which then give rise to the classification of linear, second order, constant coefficient partial differential equations into: elliptic, parabolic, and hyperbolic equations. For each one of these classes we then discuss the main ideas behind problem with them and the existence of solutions: both classical and weak.
In this work, we obtain a local maximum principle along the Ricci flow
$g(t)$
under the condition that
$\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$
for
$t>0$
for some constant
${\alpha }>0$
. As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for
$t>0$
, provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature. By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for
$t>0$
.
We establish gradient estimates for solutions to the Dirichlet problem for the constant mean curvature equation in hyperbolic space. We obtain these estimates on bounded strictly convex domains by using the maximum principles theory of Φ-functions of Payne and Philippin. These estimates are then employed to solve the Dirichlet problem when the mean curvature H satisfies H < 1 under suitable boundary conditions.
This paper is concerned with the problem of existence and uniqueness of weak and classical solutions for a fourth-order semilinear boundary value problem. The existence and uniqueness for weak solutions follows from standard variational methods, while similar uniqueness results for classical solutions are derived using maximum principles.
on the space interval (0, 1) with two sets of the boundary conditions: the Dirichlet and periodic ones. For both situations we prove that there exists the unique H1 bounded trajectory of this equation defined for all t ∈ ℝ. Moreover we demonstrate that this trajectory attracts all trajectories both in pullback and forward sense. We also prove that for the Dirichlet case this attraction is exponential.
We present some comparison results for solutions to certain non-local elliptic and parabolic problems that involve the fractional Laplacian operator and mixed boundary conditions, given by a zero Dirichlet datum on part of the complementary of the domain and zero Neumann data on the rest. These results represent a non-local generalization of a Hopf's lemma for elliptic and parabolic problems with mixed conditions. In particular we prove the non-local version of the results obtained by Dávila and Dávila and Dupaigne for the classical case s = 1 in [23, 24] respectively.
We study the mechanism of proving non-collapsing in the context of extrinsic curvature flows via the maximum principle in combination with a suitable two-point function in homogeneity greater than one. Our paper serves as the first step in this direction and we consider the case of a curve which is C2-close to a circle initially and which flows by a power greater than one of the curvature along its normal vector.
We give a unified approach to strong maximum principles for a large class of nonlocal operators of order s ∈ (0, 1) that includes the Dirichlet, the Neumann Restricted (or Regional) and the Neumann Semirestricted Laplacians.
In this paper, we analyse the semilinear fourth-order problem ( − Δ)2u = g(u) in exterior domains of ℝN. Assuming the function g is nondecreasing and continuous in [0, + ∞) and positive in (0, + ∞), we show that positive classical supersolutions u of the problem which additionally verify − Δu > 0 exist if and only if N ≥ 5 and
for some δ > 0. When only radially symmetric solutions are taken into account, we also show that the monotonicity of g is not needed in this result. Finally, we consider the same problem posed in ℝN and show that if g is additionally convex and lies above a power greater than one at infinity, then all positive supersolutions u automatically verify − Δu > 0 in ℝN, and they do not exist when the previous condition fails.
where Ω is a bounded Lipschitz domain in ℝN with a cylindrical symmetry, ν stands for the outer normal and $\partial \Omega = \overline {\Gamma _1} \cup \overline {\Gamma _2} $.
Under a Morse index condition, we prove cylindrical symmetry results for solutions of the above problem.
As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem
For this one, we construct sequences of eigenvalues and provide variational characterization of them, following the usual approach for the Dirichlet case, but working in the product Hilbert space L2 (Ω) × L2(Γ2).
We show uniform-in-time propagation of algebraic and stretched exponential moments for the Becker--Döring equations. Our proof is based upon a suitable use of the maximum principle together with known rates of convergence to equilibrium.
The Lattice Boltzmann Method (LBM) has established itself as a popular numerical method in computational fluid dynamics. Several advancements have been recently made in LBM, which include multiple-relaxation-time LBM to simulate anisotropic advection-diffusion processes. Because of the importance of LBM simulations for transport problems in subsurface and reactive flows, one needs to study the accuracy and structure preserving properties of numerical solutions under the LBM. The solutions to advective-diffusive systems are known to satisfy maximum principles, comparison principles, the non-negative constraint, and the decay property. In this paper, using several numerical experiments, it will be shown that current single- and multiple-relaxation-time lattice Boltzmann methods fail to preserve these mathematical properties for transient diffusion-type equations. We will also show that these violations may not be removed by simply refining the discretization parameters. More importantly, it will be shown that meeting stability conditions alone does not guarantee the preservation of the aforementioned mathematical principles and physical constraints in the discrete setting. A discussion on the source of these violations and possible approaches to avoid them is included. A condition to guarantee the non-negativity of concentration under LBM in the case of isotropic diffusion is also derived. The impact of this research is twofold. First, the study poses several outstanding research problems, which should guide researchers to develop LBM-based formulations for transport problems that respect important mathematical properties and physical constraints in the discrete setting. This paper can also serve as a good source of benchmark problems for such future research endeavors. Second, this study cautions the practitioners of the LBM for transport problems with the associated numerical deficiencies of the LBM, and provides guidelines for performing predictive simulations of advective-diffusive processes using the LBM.
In this paper we study the strong local survival property for discrete-time and continuous-time branching random walks. We study this property by means of an infinite-dimensional generating function G and a maximum principle which, we prove, is satisfied by every fixed point of G. We give results for the existence of a strong local survival regime and we prove that, unlike local and global survival, in continuous time, strong local survival is not a monotone property in the general case (though it is monotone if the branching random walk is quasitransitive). We provide an example of an irreducible branching random walk where the strong local property depends on the starting site of the process. By means of other counterexamples, we show that the existence of a pure global phase is not equivalent to nonamenability of the process, and that even an irreducible branching random walk with the same branching law at each site may exhibit nonstrong local survival. Finally, we show that the generating function of an irreducible branching random walk can have more than two fixed points; this disproves a previously known result.
The partially observed optimal control problem is considered for forward-backward doubly stochastic systems with controls entering into the diffusion and the observation. The maximum principle is proven for the partially observable optimal control problems. A probabilistic approach is used, and the adjoint processes are characterized as solutions of related forward-backward doubly stochastic differential equations in finite-dimensional spaces. Then, our theoretical result is applied to study a partially-observed linear-quadratic optimal control problem for a fully coupled forward-backward doubly stochastic system.
This paper deals with the optimal control problem in which the controlled system isdescribed by a fully coupled anticipated forward-backward stochastic differential delayedequation. The maximum principle for this problem is obtained under the assumption that thediffusion coefficient does not contain the control variables and the control domain is notnecessarily convex. Both the necessary and sufficient conditions of optimality are proved.As illustrating examples, two kinds of linear quadratic control problems are discussed andboth optimal controls are derived explicitly.
Two-dimensional inviscid channel flow of an incompressible fluid is considered. It isshown that if the flow is steady and features no horizontal stagnation, then the flow mustnecessarily be a parallel shear flow.
In this paper we establish an existence and uniqueness result for a class of non-local elliptic differential equations with the Dirichlet boundary conditions, which, in general, do not accept a maximum principle. We introduce one monotone sequence of lower–upper pairs of solutions and prove uniform convergence of that sequence to the actual solution of the problem, which is the unique solution for some range of λ (the parameter of the problem). The convergence of the iterative sequence is tested through examples with an order of convergence greater than 1.