We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Wigner's theorem characterizes isometries of the set of all rank one projections on a Hilbert space. In metric geometry, nonexpansive maps and noncontractive maps are well-studied generalizations of isometries. We show that under certain conditions Wigner symmetries can be characterized as nonexpansive or noncontractive maps on the set of all projections of rank one. The assumptions required for such characterizations are injectivity or surjectivity and they differ in the finite and the infinite-dimensional case. Motivated by a recently obtained optimal version of Uhlhorn's generalization of Wigner's theorem, we also give a description of nonexpansive maps which satisfy a condition that is much weaker than surjectivity. Such maps do not need to be Wigner symmetries. The optimality of all presented results is shown by counterexamples.
Extending recent results by Cascales et al. [‘Plasticity of the unit ball of a strictly convex Banach space’, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.110(2) (2016), 723–727], we demonstrate that for every Banach space $X$ and every collection $Z_{i},i\in I$, of strictly convex Banach spaces, every nonexpansive bijection from the unit ball of $X$ to the unit ball of the sum of $Z_{i}$ by $\ell _{1}$ is an isometry.
We give an explicit Krasnoselski–Mann type method for finding common solutions of the following system of equilibrium and hierarchical fixed points: where C is a closed convex subset of a Hilbert space H, G:C×C→ℝ is an equilibrium function, T:C→C is a nonexpansive mapping with Fix(T) its set of fixed points and f:C→C is a ρ-contraction. Our algorithm is constructed and proved using the idea of the paper of [Y. Yao and Y.-C. Liou, ‘Weak and strong convergence of Krasnosel’skiĭ–Mann iteration for hierarchical fixed point problems’, Inverse Problems24 (2008), 501–508], in which only the variational inequality problem of finding hierarchically a fixed point of a nonexpansive mapping T with respect to a ρ-contraction f was considered. The paper follows the lines of research of corresponding results of Moudafi and Théra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.