We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this short chapter we discuss the p-ranks of matrices related to (strongly regular) graphs. The p-rank of an integral matrix is the rank over the finite field of order p. Designs or graphs with the same parameters can sometimes be distinguished by considering the 𝑝-rank of associated matrices. For strongly regular graphs the interesting primes p are those dividing r-s (where r and s are the eigenvalues distinct from the valence), otherwise the p-rank is completely determined by the parameters. We list the interesting p-ranks of many graphs and discuss also some families of graphs, such as triangular graphs, Paley and Peisert graphs, symplectic graphs. We also discuss the Smith normal form of the adjacency matrix of some families of graphs, such as the complete graphs, lattice graphs, triangular graphs, Paley and Peisert graphs.
In this paper, we study the growth of fine Selmer groups in two cases. First, we study the growth of fine Selmer ranks in multiple $\mathbb{Z}_{p}$-extensions. We show that the growth of the fine Selmer group is unbounded in such towers. We recover a sufficient condition to prove the $\unicode[STIX]{x1D707}=0$ conjecture for cyclotomic $\mathbb{Z}_{p}$-extensions. We show that in certain non-cyclotomic $\mathbb{Z}_{p}$-towers, the $\unicode[STIX]{x1D707}$-invariant of the fine Selmer group can be arbitrarily large. Second, we show that in an unramified $p$-class field tower, the growth of the fine Selmer group is unbounded. This tower is non-Abelian and non-$p$-adic analytic.
We prove that the essential dimension of central simple algebras of degree $p^{\ell m}$ and exponent $p^{m}$ over fields $F$ containing a base-field $k$ of characteristic $p$ is at least $\ell +1$ when $k$ is perfect. We do this by observing that the $p$-rank of $F$ bounds the symbol length in $\text{Br}_{p^{m}}(F)$ and that there exist indecomposable $p$-algebras of degree $p^{\ell m}$ and exponent $p^{m}$. We also prove that the symbol length of the Kato-Milne cohomology group $\text{H}_{p^{m}}^{n+1}(F)$ is bounded from above by $\binom{r}{n}$ where $r$ is the $p$-rank of the field, and provide upper and lower bounds for the essential dimension of Brauer classes of a given symbol length.
In this paper we study the p-rank of Abelian prime-to-p covers of the generic r-pointed curve of genus g. There is an obvious bound on the p-rank of the cover. We show that it suffices to compute the p-rank of cyclic prime-to-p covers of the generic r-pointed curve of genus zero. In that situation, we show that, for large p, the p-rank of the cover is equal to the bound.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.