We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider the convergence rate with respect to Wasserstein distance in the invariance principle for deterministic non-uniformly hyperbolic systems. Our results apply to uniformly hyperbolic systems and large classes of non-uniformly hyperbolic systems including intermittent maps, Viana maps, unimodal maps and others. Furthermore, as a non-trivial application to the homogenization problem, we investigate the Wasserstein convergence rate of a fast–slow discrete deterministic system to a stochastic differential equation.
We study the quasi-stationary behavior of the birth–death process with an entrance boundary at infinity. We give by the h-transform an alternative and simpler proof for the exponential convergence of conditioned distributions to a unique quasi-stationary distribution in the total variation norm. In addition, we also show that starting from any initial distribution the conditional probability converges to the unique quasi-stationary distribution exponentially fast in the
$\psi$
-norm.
It is well known that each statistic in the family of power divergence statistics, across n trials and r classifications with index parameter
$\lambda\in\mathbb{R}$
(the Pearson, likelihood ratio, and Freeman–Tukey statistics correspond to
$\lambda=1,0,-1/2$
, respectively), is asymptotically chi-square distributed as the sample size tends to infinity. We obtain explicit bounds on this distributional approximation, measured using smooth test functions, that hold for a given finite sample n, and all index parameters (
$\lambda>-1$
) for which such finite-sample bounds are meaningful. We obtain bounds that are of the optimal order
$n^{-1}$
. The dependence of our bounds on the index parameter
$\lambda$
and the cell classification probabilities is also optimal, and the dependence on the number of cells is also respectable. Our bounds generalise, complement, and improve on recent results from the literature.
It is well known that stationary geometrically ergodic Markov chains are
$\beta$
-mixing (absolutely regular) with geometrically decaying mixing coefficients. Furthermore, for initial distributions other than the stationary one, geometric ergodicity implies
$\beta$
-mixing under suitable moment assumptions. In this note we show that similar results hold also for subgeometrically ergodic Markov chains. In particular, for both stationary and other initial distributions, subgeometric ergodicity implies
$\beta$
-mixing with subgeometrically decaying mixing coefficients. Although this result is simple, it should prove very useful in obtaining rates of mixing in situations where geometric ergodicity cannot be established. To illustrate our results we derive new subgeometric ergodicity and
$\beta$
-mixing results for the self-exciting threshold autoregressive model.
A famous result in renewal theory is the central limit theorem for renewal processes. Since, in applications, usually only observations from a finite time interval are available, a bound on the Kolmogorov distance to the normal distribution is desirable. We provide an explicit non-uniform bound for the renewal central limit theorem based on Stein’s method and track the explicit values of the constants. For this bound the inter-arrival time distribution is required to have only a second moment. As an intermediate result of independent interest we obtain explicit bounds in a non-central Berry–Esseen theorem under second moment conditions.
In this work we deal with extreme value theory in the context of continued fractions using techniques from probability theory, ergodic theory and real analysis. We give an upper bound for the rate of convergence in the Doeblin–Iosifescu asymptotics for the exceedances of digits obtained from the regular continued fraction expansion of a number chosen randomly from $(0,1)$ according to the Gauss measure. As a consequence, we significantly improve the best known upper bound on the rate of convergence of the maxima in this case. We observe that the asymptotics of order statistics and the extremal point process can also be investigated using our methods.
Let (X, Y) = (Xn, Yn)n≥1 be the output process generated by a hidden chain Z = (Zn)n≥1, where Z is a finite-state, aperiodic, time homogeneous, and irreducible Markov chain. Let LCn be the length of the longest common subsequences of X1,..., Xn and Y1,..., Yn. Under a mixing hypothesis, a rate of convergence result is obtained for E[LCn]/n.
The study of finite approximations of probability measures has a long history. In Xu and Berger (2017), the authors focused on constrained finite approximations and, in particular, uniform ones in dimension d=1. In the present paper we give an elementary construction of a uniform decomposition of probability measures in dimension d≥1. We then use this decomposition to obtain upper bounds on the rate of convergence of the optimal uniform approximation error. These bounds appear to be the generalization of the ones obtained by Xu and Berger (2017) and to be sharp for generic probability measures.
We are interested in the rate of convergence of a subordinate Markov process to its invariant measure. Given a subordinator and the corresponding Bernstein function (Laplace exponent), we characterize the convergence rate of the subordinate Markov process; the key ingredients are the rate of convergence of the original process and the (inverse of the) Bernstein function. At a technical level, the crucial point is to bound three types of moment (subexponential, algebraic, and logarithmic) for subordinators as time t tends to ∞. We also discuss some concrete models and we show that subordination can dramatically change the speed of convergence to equilibrium.
The two-sided nonlinear boundary crossing probabilities for one-dimensional Brownian motion and related processes have been studied in Fu and Wu (2010) based on the finite Markov chain imbedding technique. It provides an efficient numerical method to computing the boundary crossing probabilities. In this paper we extend the above results for high-dimensional Brownian motion. In particular, we obtain the rate of convergence for high-dimensional boundary crossing probabilities. Numerical results are also provided to illustrate our results.
An explicit difference scheme is described, analyzed and tested for numerically approximating stochastic elastic equation driven by infinite dimensional noise. The noise processes are approximated by piecewise constant random processes and the integral formula of the stochastic elastic equation is approximated by a truncated series. Error analysis of the numerical method yields estimate of convergence rate. The rate of convergence is demonstrated with numerical experiments.
We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.
The generalized Pólya urn has been extensively studied and is widely applied in many disciplines. An important application of urn models is in the development of randomized treatment allocation schemes in clinical studies. The randomly reinforced urn was recently proposed, but, although the model has some intuitively desirable properties, it lacks theoretical justification. In this paper we obtain important asymptotic properties for multicolor reinforced urn models. We derive results for the rate of convergence of the number of patients assigned to each treatment under a set of minimum required conditions and provide the distributions of the limits. Furthermore, we study the asymptotic behavior for the nonhomogeneous case.
We consider possibly nonlinear distributional fixed-point equations on weighted branching trees, which include the well-known linear branching recursion. In Jelenković and Olvera-Cravioto (2012), an implicit renewal theorem was developed that enables the characterization of the power-tail asymptotics of the solutions to many equations that fall into this category. In this paper we complement the analysis in our 2012 paper to provide the corresponding rate of convergence.
This paper provides a unified approach to characterizing the relation between factor substitution and economic growth in different one-sector growth models (namely, the Solow, Ramsey, and Diamond models). Our main finding is that if better factor substitution raises savings in the steady state, then a higher per capita income results. There are two channels by which factor substitution affects savings: the positive efficiency effect via income and the ambiguous distribution effect via factor income shares. If the efficiency effect dominates, then a higher elasticity of substitution leads to a higher level of per capita steady-state income. In transition, factor substitution affects the rate of convergence both directly and through the equilibrium profit share. The former arises from diminishing marginal productivity of capital whereas the latter reflects its relative scarcity. Depending on the interaction of these effects, the net outcomes are characterized.
Optimal control of stochastic bandwidth-sharing networks is typically difficult. In order to facilitate the analysis, deterministic analogues of stochastic bandwidth-sharing networks, the so-called fluid models, are often taken for analysis, as their optimal control can be found more easily. The tracking policy translates the fluid optimal control policy back to a control policy for the stochastic model, so that the fluid optimality can be achieved asymptotically when the stochastic model is scaled properly. In this work we study the efficiency of the tracking policy, that is, how fast the fluid optimality can be achieved in the stochastic model with respect to the scaling parameter. In particular, our result shows that, under certain conditions, the tracking policy can be as efficient as feedback policies.
The joint estimation of both drift and diffusion coefficient parameters is treatedunder the situation where the data are discretely observed from an ergodic diffusion processand where the statistical model may or may not include the true diffusion process.We consider the minimum contrast estimator,which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density.The asymptotic normality of the minimum contrast estimator is proved.In particular, the rate of convergence for the minimum contrast estimator of diffusion coefficient parameter in a misspecified modelis different from the one in the correctly specified parametric model.
We provide sufficient conditions which ensure that the intrinsic martingale in the supercritical branching random walk converges exponentially fast to its limit. We include in particular the case of Galton-Watson processes so that our results can be seen as a generalization of a result given in the classical treatise by Asmussen and Hering (1983). As an auxiliary tool, we prove ultimate versions of two results concerning the exponential renewal measures which may be of interest in themselves and which correct, generalize, and simplify some earlier works.