We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a robust optimal investment–reinsurance problem to minimize the goal-reaching probability that the value of the wealth process reaches a low barrier before a high goal for an ambiguity-averse insurer. The insurer invests its surplus in a constrained financial market, where the proportion of borrowed amount to the current wealth level is no more than a given constant, and short-selling is prohibited. We assume that the insurer purchases per-claim reinsurance to transfer its risk exposure to a reinsurer whose premium is computed according to the mean–variance premium principle. Using the stochastic control approach based on the Hamilton–Jacobi–Bellman equation, we derive robust optimal investment–reinsurance strategies and the corresponding value functions. We conclude that the behavior of borrowing typically occurs with a lower wealth level. Finally, numerical examples are given to illustrate our results.
Insurers draw on sophisticated models for the probability distributions over losses associated with catastrophic events that are required to price insurance policies. But prevailing pricing methods don’t factor in the ambiguity around model-based projections that derive from the relative paucity of data about extreme events. I argue however that most current theories of decision making under ambiguity only partially support a solution to the challenge that insurance decision makers face and propose an alternative approach that allows for decision making that is responsive to both the evidential situation of the insurance decision maker and their attitude to ambiguity.
We study the optimal investment-reinsurance problem in the context of equity-linked insurance products. Such products often have a capital guarantee, which can motivate insurers to purchase reinsurance. Since a reinsurance contract implies an interaction between the insurer and the reinsurer, we model the optimization problem as a Stackelberg game. The reinsurer is the leader in the game and maximizes its expected utility by selecting its optimal investment strategy and a safety loading in the reinsurance contract it offers to the insurer. The reinsurer can assess how the insurer will rationally react on each action of the reinsurer. The insurance company is the follower and maximizes its expected utility by choosing its investment strategy and the amount of reinsurance the company purchases at the price offered by the reinsurer. In this game, we derive the Stackelberg equilibrium for general utility functions. For power utility functions, we calculate the equilibrium explicitly and find that the reinsurer selects the largest reinsurance premium such that the insurer may still buy the maximal amount of reinsurance. Since in the equilibrium the insurer is indifferent in the amount of reinsurance, in practice, the reinsurer should consider charging a smaller reinsurance premium than the equilibrium one. Therefore, we propose several criteria for choosing such a discount rate and investigate its wealth-equivalent impact on the expected utility of each party.
Due to the presence of reporting and settlement delay, claim data sets collected by non-life insurance companies are typically incomplete, facing right censored claim count and claim severity observations. Current practice in non-life insurance pricing tackles these right censored data via a two-step procedure. First, best estimates are computed for the number of claims that occurred in past exposure periods and the ultimate claim severities, using the incomplete, historical claim data. Second, pricing actuaries build predictive models to estimate technical, pure premiums for new contracts by treating these best estimates as actual observed outcomes, hereby neglecting their inherent uncertainty. We propose an alternative approach that brings valuable insights for both non-life pricing and reserving. As such, we effectively bridge these two key actuarial tasks that have traditionally been discussed in silos. Hereto, we develop a granular occurrence and development model for non-life claims that tackles reserving and at the same time resolves the inconsistency in traditional pricing techniques between actual observations and imputed best estimates. We illustrate our proposed model on an insurance as well as a reinsurance portfolio. The advantages of our proposed strategy are most compelling in the reinsurance illustration where large uncertainties in the best estimates originate from long reporting and settlement delays, low claim frequencies and heavy (even extreme) claim sizes.
This paper studies a Pareto-optimal reinsurance problem when the contract is subject to default of the reinsurer. We assume that the reinsurer can invest a share of its wealth in a risky asset and default occurs when the reinsurer's end-of-period wealth is insufficient to cover the indemnity. We show that without the solvency regulation, the optimal indemnity function is of excess-of-loss form, regardless of the investment decision. Under the solvency regulation constraint, by assuming the investment decision remains unchanged, the optimal indemnity function is characterized element-wisely. Partial results are derived when both the indemnity function and investment decision are impacted by the solvency regulation. Numerical examples are provided to illustrate the implications of our results and the sensitivity of solution to the model parameters.
This article examines the impact of the largest claims reinsurance treaties on loss reserve of the ceding company. The largest claims reinsurance, known as LCR, and ECOMOR reinsurance treaties are considered to be the two most appropriate reinsurance treaties for large or catastrophe claims. Then, it studies the impact of such treaties on loss reserves. Through a simulation study, it shown that, under a more general situation, the LCR treaty can be a more efficient (in some sense, see below) treaty than the ECOMOR treaty for the ceding company.
This paper studies the open-loop equilibrium strategies for a class of non-zero-sum reinsurance–investment stochastic differential games between two insurers with a state-dependent mean expectation in the incomplete market. Both insurers are able to purchase proportional reinsurance contracts and invest their wealth in a risk-free asset and a risky asset whose price is modeled by a general stochastic volatility model. The surplus processes of two insurers are driven by two standard Brownian motions. The objective for each insurer is to find the equilibrium investment and reinsurance strategies to balance the expected return and variance of relative terminal wealth. Incorporating the forward backward stochastic differential equations (FBSDEs), we derive the sufficient conditions and obtain the general solutions of equilibrium controls for two insurers. Furthermore, we apply our theoretical results to two special stochastic volatility models (Hull–White model and Heston model). Numerical examples are also provided to illustrate our results.
In this chapter, we review the different methods available to a firm that wants to transfer risk. First, we consider the traditional route of insurance, or reinsurance. We describe the different types of insurance contracts, and analyse their advantages and disadvantages. We then consider captive insurance companies, which are insurance companies that are owned by the organization that is transferring risk. Next, we discuss securitization of risk, where risk is packaged into investments that are sold off in the capital markets. One of the most interesting examples of securitized insurance risk is the catastrophe bond, or cat bond. We also look at examples of securitization of demographic risk, through pandemic bonds and longevity derivatives.
A company with $n$ geographically widely dispersed sites seeks insurance that pays off if $m$ out of the $n$ sites experience rarely occurring catastrophes (e.g., earthquakes) during a year. This study describes an adaptive dynamic strategy that enables an insurance company to offer the policy with smaller loss probability than more conventional static policies induce, but at a comparable or lower premium. The strategy accomplishes this by periodically purchasing reinsurance on individual sites. Exploiting rarity, the policy induces zero loss with probability one if no more than one quake occurs during any review interval. The policy also may induce a profit if $m$ or more quakes occur in an interval if no quakes have occurred in previous intervals. The study also examines the benefit of more than one reinsurance policy per active site. The study relies on expected utility to determine indifference premiums and derives an upper bound on loss probability independent of premium.
Crop revenue insurance is unique, because it involves a guarantee subsuming yield risk and highly systematic price risk. This study examines whether crop insurers could use options instead of, or in addition to, assigning policies to the Commercial Funds of the USDA Federal Crop Insurance Corporation (FCIC) as per the Standard Reinsurance Agreement (SRA) to hedge the price risk of revenue insurance policies. The behavioral model examines the optimal hedge ratio for a crop insurer with a book of business consisting of corn Revenue Protection (RP) policies. Results show that a mix of put and call options can hedge the price risk of the RP policies. The higher optimal hedge ratios of call options as compared to put options imply that the risk of increased liability due to upside price risk can be hedged using options better than downside price risk. This study also analyzed the combination of options with the SRA at 35, 50, and 75% retention levels. The zero optimal hedge ratios at each retention level and the negative correlation between RP indemnities and the option returns when the crop insurer mixed options and SRA suggest that the purchasing of options provides no additional risk protection to crop insurers beyond what is provided by the SRA despite retention limits.
This chapter looks at insurance standards used to create new markets or reinforce existing ones. It unveils a number of little-known standards that are instrumental in pushing the frontier of highly innovative and securitised insurance markets ever further. It first provides a detailed analysis of the project that insurers, pension schemes and investment banks developed over several years for a standardised solution to pass over to capital markets the risk associated with longer and different expectations in populations’ longevity – known as ‘longevity risk’. Then it shows the significance of standardised data exchange formats in various lines of insurance markets. A case in point is how the world’s largest reinsurers took decades to standardise the exposure to natural hazards risks included in their portfolio. Another one, though not confined to insurance, is the standardised guidelines used for extra-financial reporting and developed by the Global Reporting Initiative (GRI). Evidence gathered in this chapter suggests that, although those standards largely belong to a logic of market creation and rationalisation, compliance remains ambiguous and falls short of a mere transnationalisation of capital accumulation.
We establish a “top-down” approximation scheme to approximate loss distributions of reinsurance products and Insurance-Linked Securities based on three input parameters, namely the Attachment Probability, Expected Loss and Exhaustion Probability. Our method is rigorously derived by utilizing a classical result from Extreme-Value Theory, the Pickands–Balkema–de Haan theorem. The robustness of the scheme is demonstrated by proving sharp error-bounds for the approximated curves with respect to the supremum and L2 norms. The practical implications of our findings are examined by applying it to Industry Loss Warranties: the method performs very accurately for each transaction. Our approach can be used in a variety of applications such as vendor model blending, portfolio optimization and premium calculation.
Adverse weather-related risk is a main source of crop production loss and a big concern for agricultural insurers and reinsurers. In response, weather risk hedging may be valuable, however, due to basis risk it has been largely unsuccessful to date. This research proposes the Lévy subordinated hierarchical Archimedean copula model in modelling the spatial dependence of weather risk to reduce basis risk. The analysis shows that the Lévy subordinated hierarchical Archimedean copula model can improve the hedging performance through more accurate modelling of the dependence structure of weather risks and is more efficient in hedging extreme downside weather risk, compared to the benchmark copula models. Further, the results reveal that more effective hedging may be achieved as the spatial aggregation level increases. This research demonstrates that hedging weather risk is an important risk management method, and the approach outlined in this paper may be useful to insurers and reinsurers in the case of agriculture, as well as for other related risks in the property and casualty sector.
We study a stochastic differential game problem between two insurers, who invest in a financial market and adopt reinsurance to manage their claim risks. Supposing that their reinsurance premium rates are calculated according to the generalized mean-variance principle, we consider the competition between the two insurers as a non-zero sum stochastic differential game. Using dynamic programming technique, we derive a system of coupled Hamilton–Jacobi–Bellman equations and show the existence of equilibrium strategies. For an exponential utility maximizing game and a probability maximizing game, we obtain semi-explicit solutions for the equilibrium strategies and the equilibrium value functions, respectively. Finally, we provide some detailed comparative-static analyses on the equilibrium strategies and illustrate some economic insights.
Drawing a framework from strategic stakeholder theory and using 1999 to 2010 panel data from the United Kingdom’s (UK) non-life insurance industry, we examine the effect of reinsurance on the decisions to donate to charities, and the amount given. We find that reinsurance substitutes for charitable giving as it optimizes the interests of multiple stakeholders. We further note that corporate giving is directly related to the size and age of insurers, proportion of female directorships and insider ownership, but generally inhibited by chief executive officer (CEO) bonus plans, dominant shareholders, and financial experts on the board. Interestingly, when reinsurance interacts with board-level variables we find that the donations decision is positively related to CEO bonus plans, and negatively linked with inside ownership and the proportion of female board members. Our research results could have important implications for stakeholders.
The life annuity business is heavily exposed to longevity risk. Risk transfer solutions are not yet fully developed, and when available they are expensive. A significant part of the risk must therefore be retained by the life insurer. So far, most of the research work on longevity risk has been mainly concerned with capital requirements and specific risk transfer solutions. However, the impact of longevity risk on shareholder value also deserves attention. While it is commonly accepted that a market-consistent valuation should be performed in this respect, the definition of a fair shareholder value for a life insurance business is not trivial. In this paper, we develop a multi-period market-consistent shareholder value model for a life annuity business. The model allows for systematic and idiosyncratic longevity risk and includes the most significant variables affecting shareholder value: the cost of capital (which in a market-consistent setting must be quantified in terms of frictional and agency costs, net of the value of the limited liability put option), policyholder demand elasticity and the cost of alternative longevity risk management solutions, namely indemnity-based and index-based solutions. We show how the model can be used for assessing the impact of different longevity risk management strategies on life insurer shareholder value and solvency.
In this paper the optimal dividend (subject to transaction costs) and reinsurance (with two reinsurers) problem is studied in the limit diffusion setting. It is assumed that transaction costs and taxes are required when dividends occur, and that the premiums charged by two reinsurers are calculated according to the exponential premium principle with different parameters, which makes the stochastic control problem nonlinear. The objective of the insurer is to determine the optimal reinsurance and dividend policy so as to maximize the expected discounted dividends until ruin. The problem is formulated as a mixed classical-impulse stochastic control problem. Explicit expressions for the value function and the corresponding optimal strategy are obtained. Finally, a numerical example is presented to illustrate the impact of the parameters associated with the two reinsurers' premium principle on the optimal reinsurance strategy.
We apply methods from multiple attribute decision making (MADM) to the problem of selecting an optimal reinsurance level. In particular, we apply the Technique for Order of Preference by Similarity to Ideal Solution method with Mahalanobis distance. We consider the classical risk model under a reinsurance arrangement – either excess of loss or proportional – and we consider scenarios that have the same finite time ruin probability. For each of these scenarios we calculate three quantities: released capital, expected profit and expected utility of resulting wealth. Using these inputs, we apply MADM to find optimal retention levels. We compare and contrast our findings with those when decisions are based on a single attribute.
In this paper we study a reinsurance game between two insurers whose surplus processes are modeled by arithmetic Brownian motions. We assume a minimax criterion in the game. One insurer tries to maximize the probability of absolute dominance while the other tries to minimize it through reinsurance control. Here absolute dominance is defined as the event that liminf of the difference of the surplus levels tends to -∞. Under suitable parameter conditions, the game is solved with the value function and the Nash equilibrium strategy given in explicit form.
The focus of the paper is non-profit lifetime annuities in the UK. Annuity insurers have been faced with, or have initiated, an unprecedented amount of change during the last decade, and rapid change is still continuing. We draw out implications for the actuarial management of the business, arising from the evolution of: longevity risk assessment and management, investment strategy and operations, financial reporting, and enterprise risk management. We discuss Solvency II in some technical depth, analysing the proposed rules for technical provisions and solvency capital requirement.