The classical biochemical hypothesis of depression posits a functional deficit in central neurotransmitter systems, particularly serotonin (5-HT) and/or noradrenaline. The major support for this theory was that antidepressants increase the amount of neurotransmitters in the synaptic cleft, by inhibiting reuptake mechanisms (tricyclics) or inhibiting enzymatic catabolism (MAOIs). The major role suggested for 5-HT in this theory led to the development of a large number of compounds which selectively inhibit 5-HT reuptake, such as fluvoxamine, fluoxetine, citalopram, sertraline, paroxetine, etc. Numerous clinical studies have demonstrated the antidepressant activity of such types of agents, supporting 5-HT deficit as the main origin of depression. Tianeptine is active in classical animal models of antidepressants. Its antidepressant efficacy has been established in controlled trials involving a large number of patients. Several biochemical studies however demonstrated that tianeptine induces in acute as well as in chronic conditions, a presynaptic increase of 5-HT reuptake, both in animal and human platelets and animal CNS. Therefore, as a 5-HT reuptake enhancer, tianeptine exhibits a mechanism of action totally opposite to 5-HT reuptake blockers such as fluoxetine but, paradoxically, both mechanisms of action are associated with a therapeutic activity in depressive disorders. Several hypotheses to explain these paradoxical findings and different methodologies to test them clinically are proposed.