We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Treatment non-response and recurrence are the main sources of disease burden in major depressive disorder (MDD). However, little is known about its neurobiological mechanism concerning the brain network changes accompanying pharmacotherapy. The present study investigated the changes in the intrinsic brain networks during 6-month antidepressant treatment phase associated with the treatment response and recurrence in MDD.
Methods
Resting-state functional magnetic resonance imaging was acquired from untreated patients with MDD and healthy controls at baseline. The patients' depressive symptoms were monitored by using the Hamilton Rating Scale for Depression (HAMD). After 6 months of antidepressant treatment, patients were re-scanned and followed up every 6 months over 2 years. Traditional statistical analysis as well as machine learning approaches were conducted to investigate the longitudinal changes in macro-scale resting-state functional network connectivity (rsFNC) strength and micro-scale resting-state functional connectivity (rsFC) associated with long-term treatment outcome in MDD.
Results
Repeated measures of the general linear model demonstrated a significant difference in the default mode network (DMN) rsFNC change before and after the 6-month antidepressant treatment between remitters and non-remitters. The difference in the rsFNC change over the 6-month antidepressant treatment between recurring and stable MDD was also specific to DMN. Machine learning analysis results revealed that only the DMN rsFC change successfully distinguished non-remitters from the remitters at 6 months and recurring from stable MDD during the 2-year follow-up.
Conclusion
Our findings demonstrated that the intrinsic DMN connectivity could be a unique and important target for treatment and recurrence prevention in MDD.
This chapter focuses on the economic impact of treatment non-response in major depressive disorders (MDD). Patient responses to initial therapy for MDD fall into four basic outcome categories. The frequency and health-care costs are associated with all four treatment outcome categories. The cost of treatment non-response is best measured relative to the costs experienced by patients who succeed on their initial course of therapy. The costs of non-response are measured relative to the costs patterns achieved by patients with an adequate course of therapy in terms of dose and duration. Multivariate ordinary least-squares (OLS) regression analyses were used to investigate the impact of the patient's drug use profile on health-care costs. The antidepressant drug therapy outcomes achieved by newly treated California Medicaid (Medi-Cal) patients are presented in the chapter. An adequate course of therapy on the initial antidepressant therapy prescribed was achieved by 17.1% of all treated patients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.