Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T04:47:28.661Z Has data issue: false hasContentIssue false

Modulation of resting-state functional connectivity in default mode network is associated with the long-term treatment outcome in major depressive disorder

Published online by Cambridge University Press:  27 September 2022

Yumeng Ju
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Mi Wang
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Jin Liu
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Bangshan Liu
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Danfeng Yan
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Xiaowen Lu
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Jinrong Sun
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Qiangli Dong
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Liang Zhang
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Hua Guo
Affiliation:
Zhumadian Psychiatric Hospital, Zhumadian, Henan 463000, China
Futao Zhao
Affiliation:
Zhumadian Psychiatric Hospital, Zhumadian, Henan 463000, China
Mei Liao
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Li Zhang
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Yan Zhang*
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
Lingjiang Li*
Affiliation:
Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
*
Author for correspondence: Lingjiang Li, E-mail: llj2920@163.com; Yan Zhang, E-mail: yan.zhang@csu.edu.cn
Author for correspondence: Lingjiang Li, E-mail: llj2920@163.com; Yan Zhang, E-mail: yan.zhang@csu.edu.cn

Abstract

Background

Treatment non-response and recurrence are the main sources of disease burden in major depressive disorder (MDD). However, little is known about its neurobiological mechanism concerning the brain network changes accompanying pharmacotherapy. The present study investigated the changes in the intrinsic brain networks during 6-month antidepressant treatment phase associated with the treatment response and recurrence in MDD.

Methods

Resting-state functional magnetic resonance imaging was acquired from untreated patients with MDD and healthy controls at baseline. The patients' depressive symptoms were monitored by using the Hamilton Rating Scale for Depression (HAMD). After 6 months of antidepressant treatment, patients were re-scanned and followed up every 6 months over 2 years. Traditional statistical analysis as well as machine learning approaches were conducted to investigate the longitudinal changes in macro-scale resting-state functional network connectivity (rsFNC) strength and micro-scale resting-state functional connectivity (rsFC) associated with long-term treatment outcome in MDD.

Results

Repeated measures of the general linear model demonstrated a significant difference in the default mode network (DMN) rsFNC change before and after the 6-month antidepressant treatment between remitters and non-remitters. The difference in the rsFNC change over the 6-month antidepressant treatment between recurring and stable MDD was also specific to DMN. Machine learning analysis results revealed that only the DMN rsFC change successfully distinguished non-remitters from the remitters at 6 months and recurring from stable MDD during the 2-year follow-up.

Conclusion

Our findings demonstrated that the intrinsic DMN connectivity could be a unique and important target for treatment and recurrence prevention in MDD.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2000) DSM-IV-TR: Diagnostic and statistical manual of mental disorders, text revision. Washington, DC: American Psychiatric Association.Google Scholar
Angstman, K. B., Pietruszewski, P., Rasmussen, N. H., Wilkinson, J. M., & Katzelnick, D. J. (2012). Depression remission after six months of collaborative care management: Role of initial severity of depression in outcome. Mental Health in Family Medicine, 9(2), 99106. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513702/.Google ScholarPubMed
Cano, M., Martinez-Zalacain, I., Bernabeu-Sanz, A., Contreras-Rodriguez, O., Hernandez-Ribas, R., Via, E., … Soriano-Mas, C. (2017). Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression: A longitudinal neuroimaging study. Translational Psychiatry, 7(2), e1023. doi: 10.1038/tp.2016.267CrossRefGoogle ScholarPubMed
Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., … Choi, K. (2021). The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 20(2), 154170. doi: 10.1002/wps.20882CrossRefGoogle ScholarPubMed
Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H., … Corlett, P. R. (2016). Cross-trial prediction of treatment outcome in depression: A machine learning approach. The Lancet. Psychiatry, 3(3), 243250. doi: 10.1016/S2215-0366(15)00471-XCrossRefGoogle ScholarPubMed
Chin Fatt, C. R., Jha, M. K., Cooper, C. M., Fonzo, G., South, C., Grannemann, B., … Trivedi, M. H. (2019). Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression. American Journal of Psychiatry, 177(2), 143154. doi: 10.1176/appi.ajp.2019.18070870CrossRefGoogle ScholarPubMed
Dennehy, E. B., Robinson, R. L., Stephenson, J. J., Faries, D., Grabner, M., Palli, S. R., … Marangell, L. B. (2015). Impact of non-remission of depression on costs and resource utilization: From the COmorbidities and symptoms of DEpression (CODE) study. Current Medical Research and Opinion, 31(6), 11651177. doi: 10.1185/03007995.2015.1029893CrossRefGoogle ScholarPubMed
DeRubeis, R. J., Zajecka, J., Shelton, R. C., Amsterdam, J. D., Fawcett, J., Xu, C., … Hollon, S. D. (2020). Prevention of recurrence after recovery from a major depressive episode with antidepressant medication alone or in combination with cognitive behavioral therapy: Phase 2 of a 2-phase randomized clinical trial. JAMA Psychiatry, 77(3), 237245. doi: 10.1001/jamapsychiatry.2019.3900CrossRefGoogle ScholarPubMed
Etkin, A., Patenaude, B., Song, Y. J., Usherwood, T., Rekshan, W., Schatzberg, A. F., … Williams, L. M. (2015). A cognitive-emotional biomarker for predicting remission with antidepressant medications: A report from the iSPOT-D trial. Neuropsychopharmacology, 40(6), 13321342. doi: 10.1038/npp.2014.333CrossRefGoogle ScholarPubMed
Fang, J., Rong, P., Hong, Y., Fan, Y., Liu, J., Wang, H., … Kong, J. (2016). Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biological Psychiatry, 79(4), 266273. doi: 10.1016/j.biopsych.2015.03.025CrossRefGoogle ScholarPubMed
Farb, N. A., Anderson, A. K., Bloch, R. T., & Segal, Z. V. (2011). Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biological Psychiatry, 70(4), 366372. https://doi.org/10.1016/j.biopsych.2011.03.009.CrossRefGoogle ScholarPubMed
Figueroa, C. A., DeJong, H., Mocking, R. J. T., Fox, E., Rive, M. M., Schene, A. H., … Ruhe, H. G. (2019). Attentional control, rumination and recurrence of depression. Journal of Affective Disorders, 256, 364372. doi: 10.1016/j.jad.2019.05.072CrossRefGoogle ScholarPubMed
Figueroa, C. A., Ruhe, H. G., Koeter, M. W., Spinhoven, P., Van der Does, W., Bockting, C. L., & Schene, A. H. (2015). Cognitive reactivity versus dysfunctional cognitions and the prediction of relapse in recurrent major depressive disorder. The Journal of Clinical Psychiatry, 76(10), e1306e1312. doi: 10.4088/JCP.14m09268CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 16641671. doi: 10.1038/nn.4135CrossRefGoogle ScholarPubMed
Gauthier, G., Mucha, L., Shi, S., & Guerin, A. (2019). Economic burden of relapse/recurrence in patients with major depressive disorder. Journal of Drug Assessment, 8(1), 97103. doi: 10.1080/21556660.2019.1612410CrossRefGoogle ScholarPubMed
Geugies, H., Opmeer, E. M., Marsman, J. B. C., Figueroa, C. A., van Tol, M. J., Schmaal, L., … Ruhe, H. G. (2019). Decreased functional connectivity of the insula within the salience network as an indicator for prospective insufficient response to antidepressants. NeuroImage: Clinical, 24, 102064. doi: 10.1016/j.nicl.2019.102064CrossRefGoogle ScholarPubMed
Gong, L., Hou, Z., Wang, Z., He, C., Yin, Y., Yuan, Y., … Zhang, Z. (2018). Disrupted topology of hippocampal connectivity is associated with short-term antidepressant response in major depressive disorder. Journal of Affective Disorders, 225, 539544. doi: 10.1016/j.jad.2017.08.086CrossRefGoogle ScholarPubMed
Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain state manipulation improves prediction of individual traits. Nature Communications, 9(1), 2807. doi: 10.1038/s41467-018-04920-3CrossRefGoogle ScholarPubMed
Guo, W., Liu, F., Xue, Z., Gao, K., Liu, Z., Xiao, C., … Zhao, J. (2013a). Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment-sensitive depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 44, 5157. doi: 10.1016/j.pnpbp.2013.01.010CrossRefGoogle ScholarPubMed
Guo, W., Liu, F., Xue, Z., Gao, K., Liu, Z., Xiao, C., … Zhao, J. (2013b). Decreased interhemispheric coordination in treatment-resistant depression: A resting-state fMRI study. PLoS One, 8(8), e71368. doi: 10.1371/journal.pone.0071368CrossRefGoogle ScholarPubMed
Hahn, A., Wadsak, W., Windischberger, C., Baldinger, P., Hoflich, A. S., Losak, J., … Lanzenberger, R. (2012). Differential modulation of the default mode network via serotonin-1A receptors. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 26192624. doi: 10.1073/pnas.1117104109CrossRefGoogle ScholarPubMed
Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biological Psychiatry, 78(4), 224230. doi: 10.1016/j.biopsych.2015.02.020CrossRefGoogle ScholarPubMed
Han, C., Wang, G., Chan, S., Kato, T., Ng, C. H., Tan, W., … Liu, C. Y. (2020). Definition and identification of patients with treatment-resistant depression in real-world clinical practice settings across Asia. Neuropsychiatric Disease and Treatment, 16, 29292941. doi: 10.2147/NDT.S264799CrossRefGoogle ScholarPubMed
Horien, C., Shen, X., Scheinost, D., & Constable, R. T. (2019). The individual functional connectome is unique and stable over months to years. NeuroImage, 189, 676687. doi: 10.1016/j.neuroimage.2019.02.002CrossRefGoogle ScholarPubMed
Jacobs, R. H., Barba, A., Gowins, J. R., Klumpp, H., Jenkins, L. M., Mickey, B. J., … Langenecker, S. A. (2016). Decoupling of the amygdala to other salience network regions in adolescent-onset recurrent major depressive disorder. Psychological Medicine, 46(05), 10551067. doi: 10.1017/S0033291715002615CrossRefGoogle ScholarPubMed
Ju, Y., Horien, C., Chen, W., Guo, W., Lu, X., Sun, J., … Li, L. (2020). Connectome-based models can predict early symptom improvement in major depressive disorder. Journal of Affective Disorders, 273, 442452. doi: 10.1016/j.jad.2020.04.028CrossRefGoogle ScholarPubMed
Kanai, T., Takeuchi, H., Furukawa, T. A., Yoshimura, R., Imaizumi, T., Kitamura, T., & Takahashi, K. (2003). Time to recurrence after recovery from major depressive episodes and its predictors. Psychological Medicine, 33(5), 839845. doi: 10.1017/s0033291703007827CrossRefGoogle ScholarPubMed
Kang, S. G., & Cho, S. E. (2020). Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder. International Journal of Molecular Sciences, 21(6), 2148. doi: 10.3390/ijms21062148CrossRefGoogle ScholarPubMed
Kennis, M., Gerritsen, L., van Dalen, M., Williams, A., Cuijpers, P., & Bockting, C. (2020). Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Molecular Psychiatry, 25(2), 321338. doi: 10.1038/s41380-019-0585-zCrossRefGoogle ScholarPubMed
Kim, Y.-K. (2018). Treatment resistance in psychiatry: Risk factors, biology, and management. Singapore: Springer. Retrieved from https://link.springer.com/book/10.1007/978-981-10-4358-1.Google Scholar
Klaassens, B. L., van Gorsel, H. C., Khalili-Mahani, N., van der Grond, J., Wyman, B. T., Whitcher, B., … van Gerven, J. M. (2015). Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity. Neuroimage, 122, 440450. doi: 10.1016/j.neuroimage.2015.08.012CrossRefGoogle ScholarPubMed
Korgaonkar, M. S., Goldstein-Piekarski, A. N., Fornito, A., & Williams, L. M. (2020). Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Molecular Psychiatry, 25(7), 15371549. doi: 10.1038/s41380-019-0574-2CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: The dangers of double dipping. Nature Neuroscience, 12(5), 535540. doi: 10.1038/nn.2303CrossRefGoogle ScholarPubMed
Kunisato, Y., Okamoto, Y., Okada, G., Aoyama, S., Demoto, Y., Munakata, A., … Yamawaki, S. (2011). Modulation of default-mode network activity by acute tryptophan depletion is associated with mood change: A resting-state functional magnetic resonance imaging study. Neuroscience Research, 69(2), 129134. doi: 10.1016/j.neures.2010.11.005CrossRefGoogle Scholar
Lake, E. M. R., Finn, E. S., Noble, S. M., Vanderwal, T., Shen, X., Rosenberg, M. D., … Constable, R. T. (2019). The functional brain organization of an individual allows prediction of measures of social abilities transdiagnostically in autism and attention-deficit/hyperactivity disorder. Biological Psychiatry, 86(4), 315326. https://doi.org/10.1016/j.biopsych.2019.02.019.CrossRefGoogle ScholarPubMed
Li, B., Liu, L., Friston, K. J., Shen, H., Wang, L., Zeng, L. L., & Hu, D. (2013). A treatment-resistant default mode subnetwork in major depression. Biological Psychiatry, 74(1), 4854. doi: 10.1016/j.biopsych.2012.11.007CrossRefGoogle ScholarPubMed
Li, J., Chen, J., Kong, W., Li, X., & Hu, B. (2022). Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: A systematic review. Journal of Affective Disorders, 296, 622634. doi: 10.1016/j.jad.2021.09.074CrossRefGoogle ScholarPubMed
Li, J., Kong, R., Liegeois, R., Orban, C., Tan, Y., Sun, N., … Yeo, B. T. T. (2019). Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage, 196, 126141. doi: 10.1016/j.neuroimage.2019.04.016CrossRefGoogle ScholarPubMed
Li, L., Su, Y. A., Wu, Y. K., Castellanos, F. X., Li, K., Li, J. T., … Yan, C. G. (2021). Eight-week antidepressant treatment reduces functional connectivity in first-episode drug-naïve patients with major depressive disorder. Human Brain Mapping, 42(8), 25932605. doi: 10.1002/hbm.25391CrossRefGoogle ScholarPubMed
Liu, C. H., Ma, X., Yuan, Z., Song, L. P., Jing, B., Lu, H. Y., … Wang, C. Y. (2017). Decreased resting-state activity in the precuneus is associated with depressive episodes in recurrent depression. The Journal of Clinical Psychiatry, 78(4), e372e382. doi: 10.4088/JCP.15m10022CrossRefGoogle ScholarPubMed
Liu, C. H., Tang, L. R., Gao, Y., Zhang, G. Z., Li, B., Li, M., … Wang, L. (2019). Resting-state mapping of neural signatures of vulnerability to depression relapse. Journal of Affective Disorders, 250, 371379. doi: 10.1016/j.jad.2019.03.022CrossRefGoogle ScholarPubMed
Liu, J., Dong, Q., Lu, X., Sun, J., Zhang, L., Wang, M., … Li, L. (2020). Influence of comorbid anxiety symptoms on cognitive deficits in patients with major depressive disorder. Journal of Affective Disorders, 260, 9196. doi: 10.1016/j.jad.2019.08.091CrossRefGoogle ScholarPubMed
Lu, X. W., Guo, H., Sun, J. R., Dong, Q. L., Zhao, F. T., Liao, X. H., … Li, L. J. (2018). A shared effect of paroxetine treatment on gray matter volume in depressive patients with and without childhood maltreatment: A voxel-based morphometry study. CNS Neuroscience & Therapeutics, 24(11), 10731083. doi: 10.1111/cns.13055CrossRefGoogle ScholarPubMed
Lythe, K. E., Moll, J., Gethin, J. A., Workman, C. I., Green, S., Lambon Ralph, M. A., … Zahn, R. (2015). Self-blame-Selective hyperconnectivity between anterior temporal and subgenual cortices and prediction of recurrent depressive episodes. JAMA psychiatry, 72(11), 11191126. doi: 10.1001/jamapsychiatry.2015.1813CrossRefGoogle ScholarPubMed
McCabe, C., & Mishor, Z. (2011). Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers. Neuroimage, 57(4), 13171323. doi: 10.1016/j.neuroimage.2011.05.051CrossRefGoogle ScholarPubMed
Meng, C., Brandl, F., Tahmasian, M., Shao, J., Manoliu, A., Scherr, M., … Sorg, C. (2014). Aberrant topology of striatum's connectivity is associated with the number of episodes in depression. Brain, 137(Pt 2), 598609. doi: 10.1093/brain/awt290CrossRefGoogle ScholarPubMed
Michalak, J., Holz, A., & Teismann, T. (2011). Rumination as a predictor of relapse in mindfulness-based cognitive therapy for depression. Psychology and Psychotherapy, 84(2), 230236. doi: 10.1348/147608310X520166CrossRefGoogle ScholarPubMed
Moffitt, T. E., Caspi, A., Taylor, A., Kokaua, J., Milne, B. J., Polanczyk, G., & Poulton, R. (2010). How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychological Medicine, 40(6), 899909. doi: 10.1017/S0033291709991036CrossRefGoogle ScholarPubMed
Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage, 154, 169173. doi: 10.1016/j.neuroimage.2016.11.052CrossRefGoogle ScholarPubMed
Nemati, S., Akiki, T. J., Roscoe, J., Ju, Y., Averill, C. L., Fouda, S., … Abdallah, C. G. (2020). A unique brain connectome fingerprint predates and predicts response to antidepressants. iScience, 23(1), 100800. doi: 10.1016/j.isci.2019.100800CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400424. doi: 10.1111/j.1745-6924.2008.00088.xCrossRefGoogle ScholarPubMed
Philip, N. S., Barredo, J., van ’t Wout-Frank, M., Tyrka, A. R., Price, L. H., & Carpenter, L. L. (2018). Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder. Biological Psychiatry, 83(3), 263272. doi: 10.1016/j.biopsych.2017.07.021CrossRefGoogle ScholarPubMed
Phillips, J. L., Batten, L. A., Aldosary, F., Tremblay, P., & Blier, P. (2012). Brain-volume increase with sustained remission in patients with treatment-resistant unipolar depression. The Journal of Clinical Psychiatry, 73(5), 625631. doi: 10.4088/JCP.11m06865CrossRefGoogle ScholarPubMed
Phillips, J. L., Batten, L. A., Tremblay, P., Aldosary, F., & Blier, P. (2015a). A prospective, longitudinal study of the effect of remission on cortical thickness and hippocampal volume in patients with treatment-resistant depression. The International Journal of Neuropsychopharmacology, 18(8), pyv037. doi: 10.1093/ijnp/pyv037CrossRefGoogle ScholarPubMed
Phillips, M. L., Chase, H. W., Sheline, Y. I., Etkin, A., Almeida, J. R., Deckersbach, T., & Trivedi, M. H. (2015b). Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: Neuroimaging approaches. American Journal of Psychiatry, 172(2), 124138. doi: 10.1176/appi.ajp.2014.14010076CrossRefGoogle ScholarPubMed
Posner, J., Hellerstein, D. J., Gat, I., Mechling, A., Klahr, K., Wang, Z., … Peterson, B. S. (2013). Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry, 70(4), 373382. doi: 10.1001/jamapsychiatry.2013.455CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678. doi: 10.1016/j.neuron.2011.09.006CrossRefGoogle ScholarPubMed
Rosenberg, M. D., Hsu, W. T., Scheinost, D., Todd Constable, R., & Chun, M. M. (2017). Connectome-based models predict separable components of attention in novel individuals. Journal of Cognitive Neuroscience, 30(2), 160173. doi: 10.1162/jocn_a_01197CrossRefGoogle ScholarPubMed
Scheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. M., Salehi, M., … Constable, R. T. (2019). Ten simple rules for predictive modeling of individual differences in neuroimaging. Neuroimage, 193, 3545. doi: 10.1016/j.neuroimage.2019.02.057CrossRefGoogle ScholarPubMed
Schrantee, A., Lucassen, P. J., Booij, J., & Reneman, L. (2018). Serotonin transporter occupancy by the SSRI citalopram predicts default-mode network connectivity. European Neuropsychopharmacology: The Journal of The European College of Neuropsychopharmacology, 28(10), 11731179. doi: 10.1016/j.euroneuro.2018.07.099CrossRefGoogle ScholarPubMed
Serra-Blasco, M., de Diego-Adelino, J., Vives-Gilabert, Y., Trujols, J., Puigdemont, D., Carceller-Sindreu, M., … Portella, M. J. (2016). Naturalistic course of major depressive disorder predicted by clinical and structural neuroimaging data: A 5-year follow-up. Depression and Anxiety, 33(11), 10551064. doi: 10.1002/da.22522CrossRefGoogle ScholarPubMed
Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013). Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage, 82, 403415. doi: 10.1016/j.neuroimage.2013.05.081CrossRefGoogle Scholar
Sinyor, M., Schaffer, A., & Levitt, A. (2010). The sequenced treatment alternatives to relieve depression (STAR*D) trial: A review. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, 55(3), 126135. doi: 10.1177/070674371005500303CrossRefGoogle ScholarPubMed
Smith, H. R., Beveridge, T. J., & Porrino, L. J. (2006). Distribution of norepinephrine transporters in the non-human primate brain. Neuroscience, 138(2), 703714. doi: 10.1016/j.neuroscience.2005.11.033CrossRefGoogle ScholarPubMed
Touya, M., Lawrence, D. F., Kangethe, A., Chrones, L., Evangelatos, T., & Polson, M. (2022). Incremental burden of relapse in patients with major depressive disorder: A real-world, retrospective cohort study using claims data. BMC Psychiatry, 22(1), 152. doi: 10.1186/s12888-022-03793-7CrossRefGoogle ScholarPubMed
Treadway, M. T., Waskom, M. L., Dillon, D. G., Holmes, A. J., Park, M. T. M., Chakravarty, M. M., … Pizzagalli, D. A. (2015). Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biological Psychiatry, 77(3), 285294. doi: 10.1016/j.biopsych.2014.06.018CrossRefGoogle ScholarPubMed
Trivedi, M. H., Rush, A. J., Wisniewski, S. R., Nierenberg, A. A., Warden, D., Ritz, L., … Team, S. D. S. (2006). Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. American Journal of Psychiatry, 163(1), 2840. doi: 10.1176/appi.ajp.163.1.28CrossRefGoogle ScholarPubMed
Trivedi, M. H., South, C., Jha, M. K., Rush, A. J., Cao, J., Kurian, B., … Fava, M. (2018). A novel strategy to identify placebo responders: Prediction index of clinical and biological markers in the EMBARC trial. Psychotherapy and Psychosomatics, 87(5), 285295. doi: 10.1159/000491093CrossRefGoogle ScholarPubMed
Turner, M. P., Fischer, H., Sivakolundu, D. K., Hubbard, N. A., Zhao, Y., Rypma, B., & Backman, L. (2020). Age-differential relationships among dopamine D1 binding potential, fusiform BOLD signal, and face-recognition performance. NeuroImage, 206, 116232. doi: 10.1016/j.neuroimage.2019.116232CrossRefGoogle ScholarPubMed
van de Ven, V., Wingen, M., Kuypers, K. P., Ramaekers, J. G., & Formisano, E. (2013). Escitalopram decreases cross-regional functional connectivity within the default-mode network. PLoS One, 8(6), e68355. doi: 10.1371/journal.pone.0068355CrossRefGoogle ScholarPubMed
van Wingen, G. A., Tendolkar, I., Urner, M., van Marle, H. J., Denys, D., Verkes, R. J., & Fernandez, G. (2014). Short-term antidepressant administration reduces default mode and task-positive network connectivity in healthy individuals during rest. Neuroimage, 88, 4753. doi: 10.1016/j.neuroimage.2013.11.022CrossRefGoogle ScholarPubMed
Varnäs, K., Halldin, C., & Hall, H. (2004). Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Human Brain Mapping, 22(3), 246260. doi: 10.1002/hbm.20035CrossRefGoogle ScholarPubMed
Varoquaux, G., Raamana, P. R., Engemann, D. A., Hoyos-Idrobo, A., Schwartz, Y., & Thirion, B. (2017). Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines. Neuroimage, 145(Pt B), 166179. doi: 10.1016/j.neuroimage.2016.10.038CrossRefGoogle ScholarPubMed
Wang, L., Xia, M., Li, K., Zeng, Y., Su, Y., Dai, W., … Si, T. (2015). The effects of antidepressant treatment on resting-state functional brain networks in patients with major depressive disorder. Human Brain Mapping, 36(2), 768778. doi: 10.1002/hbm.22663CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 4976. doi: 10.1146/annurev-clinpsy-032511-143049CrossRefGoogle ScholarPubMed
Workman, C. I., Lythe, K. E., McKie, S., Moll, J., Gethin, J. A., Deakin, J. F., … Zahn, R. (2017). A novel resting-state functional magnetic resonance imaging signature of resilience to recurrent depression. Psychological Medicine, 47(4), 597607. doi: 10.1017/S0033291716002567CrossRefGoogle ScholarPubMed
Wu, M., Andreescu, C., Butters, M. A., Tamburo, R., Reynolds, C. F. III, & Aizenstein, H. (2011). Default-mode network connectivity and white matter burden in late-life depression. Psychiatry Research, 194(1), 3946. doi: 10.1016/j.pscychresns.2011.04.003CrossRefGoogle ScholarPubMed
Yan, C. G., Chen, X., Li, L., Castellanos, F. X., Bai, T. J., Bo, Q. J., … Zang, Y. F. (2019). Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proceedings of the National Academy of Sciences of the United States of America, 116(18), 90789083. doi: 10.1073/pnas.1900390116CrossRefGoogle ScholarPubMed
Zaremba, D., Dohm, K., Redlich, R., Grotegerd, D., Strojny, R., Meinert, S., … Dannlowski, U. (2018). Association of brain cortical changes with relapse in patients with major depressive disorder. JAMA Psychiatry, 75(5), 484492. doi: 10.1001/jamapsychiatry.2018.0123CrossRefGoogle ScholarPubMed
Zeng, L. L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., … Hu, D. (2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135(Pt 5), 14981507. doi: 10.1093/brain/aws059CrossRefGoogle ScholarPubMed
Zhang, L., Chen, Y., Yue, L., Liu, Q., Montgomery, W., Zhi, L., & Wang, W. (2016). Medication use patterns, health care resource utilization, and economic burden for patients with major depressive disorder in Beijing, people's republic of China. Neuropsychiatric Disease and Treatment, 12, 941949. doi: 10.2147/NDT.S97407Google ScholarPubMed
Supplementary material: File

Ju et al. supplementary material

Ju et al. supplementary material

Download Ju et al. supplementary material(File)
File 263.5 KB