We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We identify a class of smooth Banach *-algebras that are differential subalgebras of commutative C*-algebras whose openness of multiplication is completely determined by the topological stable rank of the target C*-algebra. We then show that group algebras of Abelian groups of unbounded exponent fail to have uniformly open convolution. Finally, we completely characterize in the complex case (uniform) openness of multiplication in algebras of continuous functions in terms of the covering dimension.
We focus on a question raised by Daws [‘Arens regularity of the algebra of operators on a Banach space’, Bull. Lond. Math. Soc.36 (2004), 493–503] concerning the Arens regularity of $B(X)$, the algebra of operators on a Banach space $X$. Among other things, we show that $B(X)$ is Arens regular if and only if $X$ is ultrareflexive.
In this work, we study and investigate the ultrapowers of ℓ1-Munn algebras. Then we show that the class of ℓ1-Munn algebras is stable under ultrapowers. Finally, applying this result to semigroup algebras, we show that for a semigroup S, ultra-amenability of ℓ1(S) and amenability of the second dual ℓ1(S)′′ are equivalent.
Some of the results of § 5 of the cited paper are incorrect: in particular, the characterization of when an algebra is ultra-amenable, in terms of a diagonal like construction, is not proved; and Theorem 5.7 is stated wrongly. The rest of the paper is unaffected. We shall show in this corrigendum that Theorem 5.7 can be corrected and that the other results of § 5 are true if the algebra in question has a certain approximation property.
We study when certain properties of Banach algebras are stable under ultrapower constructions. In particular, we consider when every ultrapower of is Arens regular, and give some evidence that this is so if and only if is isomorphic to a closed subalgebra of operators on a super-reflexive Banach space. We show that such ideas are closely related to whether one can sensibly define an ultrapower of a dual Banach algebraffi We study how tensor products of ultrapowers behave, and apply this to study the question of when every ultrapower of is amenable. We provide an abstract characterization in terms of something like an approximate diagonal, and consider when every ultrapower of a C*-algebra, or a group L1-convolution algebra, is amenable.
I present solutions to several questions of Paul Bankston [2] by means of another version of the ultracoproduct construction, and explain the relation of ultracoproduct of compact Hausdorff spaces to other constructions combining topology, algebra and logic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.