Published online by Cambridge University Press: 27 June 2025
In this mostly expository paper we explain how the Bernstein basis, widely used in computer-aided geometric design, provides an efficient method for real root isolation, using de Casteljau's algorithm. We discuss the link between this approach and more classical methods for real root isolation. We also present a new improved method for isolating real roots in the Bernstein basis inspired by Roullier and Zimmerman.
Introduction
Real root isolation is an important subroutine in many algorithms of real algebraic geometry [Basu et al. 2003] as well as in exact geometric computations, and is also interesting in its own right.
Our approach to real root isolation is based on properties of the Bernstein basis. We first recall Descartes’ Law of Signs and give a useful partial reciprocal to it. Section 2 contains the definition and main properties of the Bernstein basis. In the third section, several variants of real root isolation based on the Bernstein basis are given. In the fourth section, the link with more classical real root isolation methods [Uspensky 1948] is established. We end the paper with a few remarks on the computational efficiency of the algorithms described.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.