Published online by Cambridge University Press: 29 May 2025
Derived categories were invented by Grothendieck and Verdier around 1960, not very long after the “old” homological algebra (of derived functors between abelian categories) was established. This “new” homological algebra, of derived categories and derived functors between them, provides a significantly richer and more flexible machinery than the “old” homological algebra. For instance, the important concepts of dualizing complex and tilting complex do not exist in the “old” homological algebra.
Suppose M is an abelian category. The main examples for us are these:
A is a ring, and M = Mod A, the category of left A-modules.
(X,A) is a ringed space, and M = Mod A, the category of sheaves of left A -modules.
A complex in M is a diagram
M =( · · ·→M−1 d−1M→ M0 d0M→ M1→· · · )
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.