Skip to main content Accessibility help
×
Hostname: page-component-76c49bb84f-887v8 Total loading time: 0 Render date: 2025-07-13T11:57:13.855Z Has data issue: false hasContentIssue false

Global optimization, the Gaussian ensemble, and universal ensemble equivalence

Published online by Cambridge University Press:  27 June 2025

Mark Pinsky
Affiliation:
Northwestern University, Illinois
Bjorn Birnir
Affiliation:
University of California, Santa Barbara
Get access

Summary

ABSTRACT. Given a constrained minimization problem, under what conditions does there exist a related, unconstrained problem having the same minimum points? This basic question in global optimization motivates this paper, which answers it from the viewpoint of statistical mechanics. In this context, it reduces to the fundamental question of the equivalence and nonequivalence of ensembles, which is analyzed using the theory of large deviations and the theory of convex functions.

In a 2000 paper appearing in the Journal of Statistical Physics,we gave necessary and sufficient conditions for ensemble equivalence and nonequivalence in terms of support and concavity properties of the microcanonical entropy. In later research we significantly extended those results by introducing a class of Gaussian ensembles, which are obtained from the canonical ensemble by adding an exponential factor involving a quadratic function of the Hamiltonian. The present paper is an overview of our work on this topic. Our most important discovery is that even when the microcanonical and canonical ensembles are not equivalent, one can often find a Gaussian ensemble that satisfies a strong form of equivalence with the microcanonical ensemble known as universal equivalence. When translated back into optimization theory, this implies that an unconstrained minimization problem involving a Lagrange multiplier and a quadratic penalty function has the same minimum points as the original constrained problem.

The results on ensemble equivalence discussed in this paper are illustrated in the context of the Curie–Weiss–Potts lattice-spin model.

1. Introduction

Oscar Lanford, at the beginning of his groundbreaking paper [Lanford 1973], describes the underlying program of statistical mechanics.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×