Skip to main content Accessibility help
×
Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-19T10:09:42.387Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  29 May 2025

Jan Krajíček
Affiliation:
Charles University, Prague
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

[1]Ajtai, M., Σ11 - formulas on finite structures, Ann. Pure Appl. Log., 24, (1983), pp. 148. 63CrossRefGoogle Scholar
[2]Ajtai, M., The complexity of the pigeonhole principle, in: Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, (1988), pp. 346355. 53, 63, 105Google Scholar
[3]Ajtai, M., Generalizations of the compactness theorem and Gödel’s completeness theorem for nonstandard finite structures, in: Proceedings of the 4th International Conference on Theory and Applications of Models of Computation, (2007), pp. 1333. 64CrossRefGoogle Scholar
[4]Ajtai, M., A generalization of Gödel’s completeness theorem for nonstandard finite structures, unpublished manuscript (2011). 64Google Scholar
[5]Alekhnovich, M., Ben-Sasson, E., Razborov, A. A., and Wigderson, A., Pseudorandom generators in propositional proof complexity, SIAM J. Comput., 34(1), (2004), pp. 6788. 1, 17, 18, 26, 27, 42, 43, 44CrossRefGoogle Scholar
[6]Allender, E., Applications of time-bounded Kolmogorov complexity in complexity theory, in: Kolmogorov Complexity and Computational Complexity, ed. Watanabe, O., Monographs on Theoretical Computer Science, EATCS Series. Berlin, Heidelberg: Springer-Verlag, (1992), pp. 422. 31CrossRefGoogle Scholar
[7]Babai, L., Trading group theory for randomness, in: Proceedings of the 17th Annual ACM Symposium on Theory of Computing (STOC), (1985), pp. 421429. New York: ACM Press. 80Google Scholar
[8]Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., and Yang, K., On the (im)possibility of obfuscating programs, J. ACM, 59(2), (2012), pp. 6:1–6:48. 79CrossRefGoogle Scholar
[9]Beckmann, A. and Buss, S. R., The NP search problems of Frege and extended Frege proofs, ACM Trans. Comput. Log., 18 (2), (2017), Article 11. 61CrossRefGoogle Scholar
[10]Buss, S. R., Bounded Arithmetic. Naples: Bibliopolis, (1986). 2, 6, 10, 100, 107Google Scholar
[11]Buss, S. R., Axiomatizations and conservation results for fragments of bounded arithmetic, in: Logic and Computation, Contemporary Mathematics 106, (1990), pp. 5784. Providence: American Mathematical Society. 6CrossRefGoogle Scholar
[12]Buss, S. R. and Krajíček, J., An application of Boolean complexity to separation problems in bounded arithmetic, Proc. London Math. Soc., 69(3), (1994), pp. 121. 108CrossRefGoogle Scholar
[13]Buss, S. R. and Pudlák, P., How to lie without being (easily) convicted and the lengths of proofs in propositional calculus, in: Computer Science Logic ’94, eds. Pacholski and Tiuryn, Lecture Notes in Computer Science 933, (1995), pp. 151162. Springer-Verlag. 60Google Scholar
[14]Chiari, M. and Krajíček, J., Witnessing functions in bounded arithmetic and search problems, J. Sym. Log., 63 (3), (1998), pp. 10951115. 7, 8CrossRefGoogle Scholar
[15]Chiari, M. and Krajíček, J., Lifting independence results in bounded arithmetic, Arch. Math. Log., 38 (2), (1999), pp. 123138. 7CrossRefGoogle Scholar
[16]Cobham, A., The intrinsic computational difficulty of functions, in: Proceedings of Logic, Methodology and Philosophy of Science, ed. Bar-Hillel, Y., Amsterdam: North-Holland Publishing Co., (1965), pp. 2430. 6Google Scholar
[17]Cook, S. A., Feasibly constructive proofs and the propositional calculus, in: Proceedings of the 7th Annual ACM Symposium on Theory of Computing (STOC), (1975), pp. 8397. New York: ACM Press. 6, 12, 24Google Scholar
[18]Cook, S. A. and Nguyen, P., Logical Foundations of Proof Complexity, Cambridge, New York, Melbourne: Cambridge University Press, (2009). 3Google Scholar
[19]Cook, S. A. and Reckhow, R. A., The relative efficiency of propositional proof systems, J. Sym. Log., 44 (1), (1979), pp. 3650. 13, 14, 59CrossRefGoogle Scholar
[20]Cook, S. A. and Thapen, N., The strength of replacement in weak arithmetic, ACM Trans. Comput. Log., 7 (4), (2006). 87CrossRefGoogle Scholar
[21]Craig, W., On axiomatizability within a system, J. Sym. Log., 18 (1), (1953), pp. 3032. 101CrossRefGoogle Scholar
[22]Dowd, M., Propositional representations of arithmetic proofs, PhD thesis, University of Toronto, (1979). 59Google Scholar
[23]Erdös, P., Some remarks on the theory of graphs, Bull. AMS, 53, (1947), pp. 292294. 99CrossRefGoogle Scholar
[24]Frege, G., Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle: Verlag von Luis Nebert, (1879). 59Google Scholar
[25]Garlík, M., A new proof of Ajtai’s completeness theorem for nonstandard finite structures, Arch. Math. Log., 54 (3–4), (2015), pp. 413424. 64CrossRefGoogle Scholar
[26]Garlík, M., Failure of feasible disjunction property for k-DNF resolution and NP-hardness of automating it, preprint (2020), ArXiv: 2003.10230. 34Google Scholar
[27]Goldreich, O., Candidate One-Way Functions Based on Expander Graphs, Preprint in ECCC, Report 90, (2000). 43Google Scholar
[28]Goldreich, O., Goldwasser, S., and Micali, S., How to construct random functions, J. Assoc. Comput. Mach., 33, (1986), pp. 792807. 44CrossRefGoogle Scholar
[29]Hirahara, S., Ilango, R., and Williams, R., Beating Brute Force for Compression Problems, Preprint in ECCC, TR23-171, (2023). https://eccc.weizmann.ac.il/report/2023/171/ 110Google Scholar
[30]Ilango, R., Li, J., and Williams, R., Indistinguishability Obfuscation, Range Avoidance, and Bounded Arithmetic, Electronic Colloquium on Computational Complexity, Report No. 38 (2023). 79, 80Google Scholar
[31]Impagliazzo, R., Kabanets, V., and Wigderson, A., In Search of an easy witness: exponential time vs. Probabilistic Polynomial time, J. Comp. Syst. Sci., 65 (4), (2002), pp. 672694. 41CrossRefGoogle Scholar
[32]Impagliazzo, R. and Naor, M., Efficient cryptographic schemes provably as secure as subset sum, J. Cryptol, 9 (4), (1996), pp. 199216. 29CrossRefGoogle Scholar
[33]Impagliazzo, R. and Wigderson, A., P = BPP unless E has sub-exponential circuits: Derandomizing the XOR lemma, in: Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC), (1997), pp. 220229. 34, 35, 41, 56, 78Google Scholar
[34]Jeřábek, E., Weak pigeonhole principle, and randomized computation, Ph.D. thesis, Charles University, Prague, (2005). 3, 9, 22Google Scholar
[35]Jeřábek, E., Dual weak pigeonhole principle, Boolean complexity, and deran-domization, Ann Pure Appl. Log., 129, (2004), pp. 137. 3, 7, 8, 9, 22, 37CrossRefGoogle Scholar
[36]Jeřábek, E., Approximate counting in bounded arithmetic, J. Symb. Log., 72 (3), (2007), pp. 959993. 3, 8, 55CrossRefGoogle Scholar
[37]Jeřábek, E., Approximate counting by hashing in bounded arithmetic, J. Symb. Log., (7493), (2009), pp. 829860. 3CrossRefGoogle Scholar
[38]Jukna, S., Boolean function complexity, Springer, 2012. 77CrossRefGoogle Scholar
[39]Kannan, R., Circuit-size lower bounds and non-reducibility to sparse sets, Inf. Ctrl., 55 (1–3), (1982), pp. 4056. 78Google Scholar
[40]Khaniki, E., Nisan-Wigderson Generators in Proof Complexity: New Lower Bounds, in: 37t h Computational Complexity Conf. CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, vol.234, of LIPIcs, pp. 17:1–17:15, (2022). 47Google Scholar
[41]Khaniki, E., Jump operators, Interactive Proofs and Proof Complexity Generators, preprint, (2023). 23, 36Google Scholar
[42]Krajíček, J., No counter-example interpretation and interactive computation, in: Logic from Computer Science, ed. Moschovakis, Y. N., Mathematical Sciences Research Institute Publ. 21, Berkeley, Springer-Verlag, (1992), pp. 287293. 76CrossRefGoogle Scholar
[43]Krajíček, J., Fragments of bounded arithmetic and bounded query classes, Trans A.M.S., 338 (2), (1993), pp. 587598. 6, 10, 58CrossRefGoogle Scholar
[44]Krajíček, J., Lower bounds to the size of constant-depth propositional proofs, J. Symb. Log., 59 (1), (1994), pp. 7386. 60CrossRefGoogle Scholar
[45]Krajíček, J., Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge University Press, (1995). 2, 3, 6, 7, 10, 12, 14, 24, 58, 59, 60, 61, 62, 63, 75, 96, 97, 105, 107CrossRefGoogle Scholar
[46]Krajíček, J., On frege and extended frege proof systems. in: Feasible Mathematics II., eds. Clote, P. and Remmel, J., Birkhauser, (1995), pp. 284319. 59, 60, 61, 62CrossRefGoogle Scholar
[47]Krajíček, J., A fundamental problem of mathematical logic, Annals of the Kurt Gödel Society, Springer-Verlag, Collegium Logicum, 2, (1996), pp. 5664. 58Google Scholar
[48]Krajíček, J., Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symb. Log., 62 (2), (1997), pp. 457486. 34CrossRefGoogle Scholar
[49]Krajíček, J., On the weak pigeonhole principle, Fundam. Math., 170(1–3), (2001), pp. 123140. 1, 2, 3, 18, 26, 34, 35, 44, 98, 100CrossRefGoogle Scholar
[50]Krajíček, J., Tautologies from pseudo-random generators, Bull. Symb. Log., 7(2), (2001), pp. 197212. 1, 18, 23, 25, 26, 28CrossRefGoogle Scholar
[51]Krajíček, J., Dual weak pigeonhole principle, pseudo-surjective functions, and provability of circuit lower bounds, J. Symb. Log., 69(1), (2004), pp. 265286. 1, 19, 20, 21, 22, 23, 36, 37, 38, 39, 40, 42, 43, 44, 52CrossRefGoogle Scholar
[52]Krajíček, J., Diagonalization in proof complexity, Fundam. Math., 182, (2004), pp. 181192.1, 46, 47, 78CrossRefGoogle Scholar
[53]Krajíček, J., Implicit proofs, J. Symb. Log., 69 (2), (2004), pp. 387397. 59, 100CrossRefGoogle Scholar
[54]Krajíček, J., Structured pigeonhole principle, search problems and hard tautologies, J. Symb. Log., 70 (2), (2005), pp. 619630. 1, 98, 99, 100CrossRefGoogle Scholar
[55]Krajíček, J., Hardness assumptions in the foundations of theoretical computer science, Arch. Math. Log., 44 (6), (2005), pp. 667675. 59, 81Google Scholar
[56]Krajíček, J., Substitutions into propositional tautologies, Inf. Process. Lett., 101(4), (2007), pp. 163167. 1, 93, 94, 95CrossRefGoogle Scholar
[57]Krajíček, J., A proof complexity generator, in: Proc. from the 13th Int. Congress of Logic, Methodology and Philosophy of Science (Beijing, August 2007), King’s College Publications, London, ser. Studies in Logic and the Foundations of Mathematics. Eds. Glymour, C., Wang, W., and Westerstahl, D., (2009), pp. 185190. 1, 50, 51, 52, 53Google Scholar
[58]Krajíček, J., On the proof complexity of the Nisan-Wigderson generator based on a hard NP ∩ coNP function, J. Math Log., 11(1), (2011), pp. 1127. 1, 33, 34, 48, 83, 84, 86, 87, 88, 97CrossRefGoogle Scholar
[59]Krajíček, J., A note on propositional proof complexity of some Ramsey-type statements, Arch. Math. Log., 50 (1–2), (2011), pp. 245255. 100CrossRefGoogle Scholar
[60]Krajíček, J., Forcing with random variables and proof complexity, London Mathematical Society Lecture Note Series, 382, Cambridge University Press, (2011). 1, 3, 27, 29, 41, 52, 53, 54, 59, 69, 70, 71, 72, 73, 74, 88Google Scholar
[61]Krajíček, J., Pseudo-finite hard instances for a student-teacher game with a Nisan-Wigderson generator, Logical methods in Computer Science, 8 (3:09), (2012), pp. 18. 1, 82, 84, 88Google Scholar
[62]Krajíček, J., On the computational complexity of finding hard tautologies, Bull. London Math. Soc., 46(1), (2014), pp. 111125. 1, 48, 49, 96, 97, 98CrossRefGoogle Scholar
[63]Krajíček, J., Consistency of circuit evaluation, extended resolution and total NP search problems, Forum Math. Sigma, 4, (2016), e15. 61CrossRefGoogle Scholar
[64]Krajíček, J., Expansions of pseudofinite structures and circuit and proof complexity, in: Liber Amicorum Alberti, eds.Jan van Eijck, Rosalie Iemhoff and Joost J. Joosten, Tributes Ser. 30, London: College Publications (2016), pp. 195203. 63, 64Google Scholar
[65]Krajíček, J., Proof complexity, Encyclopedia of Mathematics and Its Applications, Vol. 170, Cambridge University Press, (2019). 3, 7, 12, 14, 20, 22, 23, 24, 27, 33, 34, 44, 46, 52, 53, 54, 58, 59, 60, 63, 69, 96, 97Google Scholar
[66]Krajíček, J., Small circuits and dual weak PHP in the universal theory of p-time algorithms, ACM Trans. Comput. Log., 22, 2, Article 11 (May 2021). 1, 77, 78, 79CrossRefGoogle Scholar
[67]Krajíček, J., Information in propositional proofs and algorithmic proof search, J. Symb. Log., 87 (2), (2022), pp. 852869. 1, 108CrossRefGoogle Scholar
[68]Krajíček, J., On the existence of strong proof complexity generators, Bull. Symb Log., 30(1), (2024), pp. 2040. 1, 19, 31, 32, 33, 91, 92, 108, 109CrossRefGoogle Scholar
[69]Krajíček, J., A proof complexity conjecture and the Incompleteness theorem, J. Symbolic Logic, to appear. ArXiv: http://arxiv.org/abs/2303.10637 1, 100, 101, 102Google Scholar
[70]Krajíček, J. and Pudlák, P., Propositional proof systems, the consistency of first-order theories and the complexity of computations, J. Symb Log., 54(3), (1989), pp. 10631079.12, 14, 46, 58, 59, 96CrossRefGoogle Scholar
[71]Krajíček, J. and Pudlák, P., Quantified propositional calculi and fragments of bounded arithmetic, Zeitschr. f. Mathematikal Logik u. Grundlagen d. Mathe-matik, Bd. 36(1), (1990), pp. 2946. 59CrossRefGoogle Scholar
[72]Krajíček, J. and Pudlák, P., Propositional provability in models of weak arithmetic, in: Computer Science Logic (Kaiserlautern, Oct. ’89), eds. Boerger, E., Kleine-Bunning, H. and Richter, M.M., Notes, Lecture in Computer Science 440, (1990), pp. 193210. Berlin, Heidelberg: Springer-Verlag. 24, 60Google Scholar
[73]Krajíček, J. and Pudlák, P., Some consequences of cryptographical conjectures for S12 and EF, Inf. Comput., 140 (1), (January 10, 1998), pp. 8294. 28, 47CrossRefGoogle Scholar
[74]Krajíček, J., Pudlák, P., and Sgall, J., Interactive computations of optimal solutions, in: Rovan, B. (ed.): Mathematical Foundations of Computer Science (B. Bystrica, August ’90), Lecture Notes in Computer Science 452, Berlin, Heidelberg: Springer-Verlag, (1990), pp. 4860. 106Google Scholar
[75]Krajíček, J., Pudlák, P., and Takeuti, G., Bounded arithmetic and the polynomial hierarchy, Ann. Pure Appl. Log., 52, (1991), pp. 143153. 6, 9, 10, 76, 81, 106CrossRefGoogle Scholar
[76]Krajíček, J., Pudlák, P., and Woods, A., An Exponential Lower Bound to the Size of Bounded Depth Frege Proofs of the Pigeonhole principle”, Random Struct. Algorithms, 7 (1), (1995), pp. 1539. 53, 105CrossRefGoogle Scholar
[77]Kuroda, S., Developing Takeuti - Yasumoto forcing, preprint (2018), DOI: https://doi.org/10.48550/arXiv.1804.03798 60Google Scholar
[78]Mazor, N. and Pass, R., The Non-Uniform Perebor Conjecture for Time-Bounded Kolmogorov Complexity is False, preprint, ECCC, TR23-175, (2023). 110 https://eccc.weizmann.ac.il/report/2023/175/Google Scholar
[79]Levin, L. A., Universal sequential search problems, Probl. Inf. Transm., 9, (1973), pp. 265266. 30Google Scholar
[80]Li, J. and Oliveira, I. C., Unprovability of strong complexity lower bounds in bounded arithmetic, in: 55th Annual ACM Symposium on Theory of Computing (STOC), (2023), pp. 10511057. 88CrossRefGoogle Scholar
[81]Nisan, N. and Wigderson, A., Hardness vs. randomness, J. Comput. System Sci., 49, (1994), pp. 149167. 41, 42, 45, 47, 48CrossRefGoogle Scholar
[82]Parikh, R., Existence and feasibility in arithmetic, J. Symb. Logic, 36, (1971), pp. 494508. 2CrossRefGoogle Scholar
[83]Paris, J. and Dimitracopoulos, C., Truth definitions for Δ0 formulas, in : Logic and Algorithmic, l’Enseignement Mathematique, 30, (1982), pp. 318329, Genéve. 63Google Scholar
[84]Paris, J., Wilkie, A. J., and Woods, A., Provability of the pigeonhole principle and the existence of infinitely many primes, J. Symb. Logic, 53 (4), (1988), pp. 12351244. 2, 39, 44CrossRefGoogle Scholar
[85]Pich, J., Hard tautologies, MSc thesis, Charles University in Prague, (2011). 47Google Scholar
[86]Pich, J., Nisan-Wigderson generators in proof systems with forms of interpolation, Math. Log. Q., 57 (4), (2011), pp. 379383. 47CrossRefGoogle Scholar
[87]Pich, J., Complexity theory in feasible mathematics, PhD thesis, Charles University, (2014). 1Google Scholar
[88]Pich, J., Circuit lower bounds in bounded arithmetics, Ann. Pure. Appl. Logic, 166 (1), (2015), pp. 2945.CrossRefGoogle Scholar
[89]Pich, J., Learning algorithms from circuit lower bounds, preprint (2020). 88 https://arxiv.org/abs/2012.14095Google Scholar
[90]Pich, J. and Santhanam, R., Learning algorithms vs. automatability of Frege systems, preprint (2021). 41 ArXiv:2111.10626Google Scholar
[91]Pich, J. and Santhanam, R., Why are proof complexity lower bounds hard? in: IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), D.Zuckerman ed., (2019), pp. 13051324. 32, 41Google Scholar
[92]Pich, J. and Santhanam, R., Strong co-nondeterministic lower bounds for NP cannot be proved feasibly, in: Proceedings of the 53rd Annual ACM Symposium on Theory of Computing (STOC), (2021), pp. 223233. 88 https://dl.acm.org/doi/abs/10.1145/3406325.3451117Google Scholar
[93]Pitassi, T., Beame, P., and Impagliazzo, R., Exponential lower bounds for the pigeonhole principle, Comput. Complex., 3, (1993), pp. 97308. 53, 105CrossRefGoogle Scholar
[94]Pudlák, P., On reducibility and symmetry of disjoint NP-pairs, Theor. Comput. Science, 295, (2003), pp. 323339. 33CrossRefGoogle Scholar
[95]Razborov, A. A., Bounded arithmetic and Lower Bounds in Boolean Complexity, in: Feasible Mathematics II, Clote, P. and Remmel, J. (eds.), (1995), pp. 344386. Boston: Birkhauser Verlag. 36CrossRefGoogle Scholar
[96]Razborov, A. A., Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic, Izvestiya of the R.A.N., 59 (1), (1995), pp. 201224. 36Google Scholar
[97]Razborov, A. A., Formulas of bounded depth in the basis &,⊕ and some combinatorial problems (Russian), Vopr. Kibern., Moscow, 134, (1988), pp. 149166. 99Google Scholar
[98]Razborov, A. A., Pseudorandom generators hard for k-DNF resolution polynomial calculus resolution, Ann. Math., 181(2), (2015), pp. 415472. 1, 26, 43, 44, 45, 46, 47CrossRefGoogle Scholar
[99]Razborov, A. A. and Rudich, S., Natural proofs, J.Comp. Syst. Sci., 55 (1), (1997), pp. 2435. 28, 41, 95CrossRefGoogle Scholar
[100]Rudich, S., Super-bits, demi-bits, and NP/qpoly-natural proofs, in: Proceedings of the 1st Interantional Symposium on Randomization and Approximation Techniques in Computer Science, LN in Computer Science, Springer-Verlag, Berlin, Heidelberg, 1269, (1997), pp. 8593. 28, 29, 41CrossRefGoogle Scholar
[101]Takeuti, G. and Yasumoto, M., Forcing in bounded arithmetic, in: Gödel ’96: Logical Foundations of Mathematics, Computer Science, and Physics, ed. P.Hajek, LN in Logic 6, A.K.Peters, (1996), pp. 120–38. 60Google Scholar
[102]Takeuti, G. and Yasumoto, M., Forcing in bounded arithmetic II, J. Symb. Log., 63, (1998), pp. 860868. 60CrossRefGoogle Scholar
[103]Thapen, N., The weak pigeonhole principle in models of bounded arithmetic, PhD thesis, Oxford University, (2002). 9Google Scholar
[104]Tseitin, G. C., On the complexity of derivations in propositional calculus, in: Studies in Mathematics and Mathematical Logic, Part II, ed. A.O.Slisenko, (1968), pp. 115125. 59Google Scholar
[105]Wang, Z., Implicit resolution, Log. Methods Comput. Sci., 9 (4–7), (2013), pp. 110. 59Google Scholar
[106]Woods, A., Some problems in logic and number theory, and their connections, PhD thesis, University of Manchester, (1981). 2Google Scholar
[107]Yao, A. C.-C., Theory andapplications of trapdoor functions, in: Proceedings of 23rd Annual IEEE Symposium on Foundations of Computer Science, (1982), pp. 8091. 28Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jan Krajíček, Charles University, Prague
  • Book: Proof Complexity Generators
  • Online publication: 29 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009611664.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jan Krajíček, Charles University, Prague
  • Book: Proof Complexity Generators
  • Online publication: 29 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009611664.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jan Krajíček, Charles University, Prague
  • Book: Proof Complexity Generators
  • Online publication: 29 May 2025
  • Chapter DOI: https://doi.org/10.1017/9781009611664.013
Available formats
×