Constraint Satisfaction Problems (CSPs) are natural computational problems that appear in many areas of theoretical computer science. Exploring which CSPs are solvable in polynomial time and which are NP-hard reveals a surprising link with central questions in universal algebra. This monograph presents a self-contained introduction to the universal-algebraic approach to complexity classification, treating both finite and infinite-domain CSPs. It includes the required background from logic and combinatorics, particularly model theory and Ramsey theory, and explains the recently discovered link between Ramsey theory and topological dynamics and its implications for CSPs. The book will be of interest to graduate students and researchers in theoretical computer science and to mathematicians in logic, combinatorics, and dynamics who wish to learn about the applications of their work in complexity theory.
‘… this book is essential reading for anyone with the vaguest interest in computational complexity, as well as for those curious about potential applications of model theory and universal algebra. It brings together decades of intense research by different research communities in a uniform format.’
Victor Lagerkvist Source: MathSciNet
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.