Skip to main content Accessibility help
×
  • Coming soon
  • Show more authors
  • Select format
  • Publisher:
    Cambridge University Press
    ISBN:
    9781009388917
    9781009388894
    Dimensions:
    (229 x 152 mm)
    Weight & Pages:
    320 Pages
    Dimensions:
    Weight & Pages:
Selected: Digital
Add to cart View cart Buy from Cambridge.org

Book description

This is a contemporary treatment of composition operators on Banach spaces of analytic functions in one complex variable. It provides a step-by-step introduction, starting with a review (including full proofs) of the key tools needed, and building the theory with a focus on Hardy and Bergman spaces. Several proofs of operator boundedness (Littlewood's principle) are given, and the authors discuss approaches to compactness issues and essential norm estimates (Shapiro's theorem) using different tools such as Carleson measures and Nevanlinna counting functions. Membership of composition operators in various ideal classes (Schatten classes for instance) and their singular numbers are studied. This framework is extended to Hardy-Orlicz and Bergman-Orlicz spaces and finally, weighted Hardy spaces are introduced, with a full characterization of those weights for which all composition operators are bounded. This will be a valuable resource for researchers and graduate students working in functional analysis, operator theory, or complex analysis.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.