Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-18T19:16:42.081Z Has data issue: false hasContentIssue false

Non-homogeneous and time-changed versions of generalized counting processes

Published online by Cambridge University Press:  27 May 2025

Kuldeep Kumar Kataria*
Affiliation:
Indian Institute of Technology Bhilai
Mostafizar Khandakar*
Affiliation:
Indian Institute of Information Technology Guwahati
Palaniappan Vellaisamy*
Affiliation:
University of California, Santa Barbara
*
*Postal address: Department of Mathematics, Indian Institute of Technology Bhilai, Durg-491002, India. Email: kuldeepk@iitbhilai.ac.in
**Postal address: Department of Science and Mathematics, Indian Institute of Information Technology Guwahati, Bongora-781015, India. Email: mostafizar.khandakar@iiitg.ac.in
***Postal address: Department of Statistics and Applied Probability, University of California, Santa Barbara, CA-93106, USA. Email: pvellais@ucsb.edu

Abstract

In this paper, we introduce a non-homogeneous version of the generalized counting process (GCP). We time-change this process by an independent inverse stable subordinator and derive the system of governing differential–integral equations for the marginal distributions of its increments. We then consider the GCP time-changed by a multistable subordinator and obtain its Lévy measure and the distribution of its first passage times. We discuss an application of a time-changed GCP, namely the time-changed generalized counting process-I (TCGCP-I) in ruin theory. A fractional version of the TCGCP-I is studied, and its long-range dependence property is established.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Applebaum, D. (2009). Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge.10.1017/CBO9780511809781CrossRefGoogle Scholar
Beghin, L. and Orsingher, E. (2009). Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 17901827.10.1214/EJP.v14-675CrossRefGoogle Scholar
Beghin, L. and Orsingher, E. (2010). Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15, 684709.10.1214/EJP.v15-762CrossRefGoogle Scholar
Beghin, L. and D’Ovidio, M. (2014). Fractional Poisson process with random drift. Electron. J. Probab. 19, 26 pp.10.1214/EJP.v19-3258CrossRefGoogle Scholar
Beghin, L. and Macci, C. (2013). Large deviations for fractional Poisson processes. Statist. Probab. Lett. 83, 11931202.10.1016/j.spl.2013.01.017CrossRefGoogle Scholar
Beghin, L. (2015). Fractional gamma and gamma-subordinated processes. Stoch. Anal. Appl. 33, 903926.10.1080/07362994.2015.1053615CrossRefGoogle Scholar
Beghin, L. and Ricciuti, C. (2019). Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator. Stoch. Anal. Appl. 37, 171188.10.1080/07362994.2018.1548970CrossRefGoogle Scholar
Bertoin, J. (1996). Lévy Processes. Cambridge University Press, Cambridge.Google Scholar
Buchak, K. V. and Sakhno, L. M. (2019). On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Statist. (98), 91–104.10.1090/tpms/1064CrossRefGoogle Scholar
Constantinescu, C. D., Ramirez, J. M. and Zhu, W. R. (2019). An application of fractional differential equations to risk theory. Finance Stoch. 23, 10011024.10.1007/s00780-019-00400-8CrossRefGoogle Scholar
Chukova, S. and Minkova, L. D. (2019). Non-homogeneous Pólya-Aeppli process. Comm. Statist. Simulation Comput. 48, 29552967.10.1080/03610918.2018.1469763CrossRefGoogle Scholar
Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A long memory property of stock market returns and a new model. J. Empir. Finance 1, 83106.10.1016/0927-5398(93)90006-DCrossRefGoogle Scholar
Doukhan, P., Oppenheim, G. and Taqqu, M. S. (Eds.). (2003). Theory and Applications of Long-Range Dependence. Birkhäuser, Boston.Google Scholar
Di Crescenzo, A., Martinucci, B. and Meoli, A. (2016). A fractional counting process and its connection with the Poisson process. ALEA Lat. Am. J. Probab. Math. Stat. 13, 291307.10.30757/ALEA.v13-12CrossRefGoogle Scholar
D’Ovidio, M. and Nane, E. (2014). Time dependent random fields on spherical non-homogeneous surfaces. Stochastic Process. Appl. 124, 20982131.10.1016/j.spa.2014.02.001CrossRefGoogle Scholar
Garra, R., Orsingher, E. and Scavino, M. (2017). Some probabilistic properties of fractional point processes. Stoch. Anal. Appl. 35, 701718.10.1080/07362994.2017.1308831CrossRefGoogle Scholar
Gupta, N. and Kumar, A. (2023). Fractional Poisson processes of order k and beyond. J. Theoret. Probab. 36, 21652191.10.1007/s10959-023-01268-3CrossRefGoogle Scholar
Kadankova, T., Leonenko, N. and Scalas, E. (2023). Fractional non-homogeneous Poisson and Pólya-Aeppli processes of order k and beyond. Comm. Statist. Theory Methods 52, 26822701.10.1080/03610926.2021.1958228CrossRefGoogle Scholar
Karagiannis, T., Molle, M. and Faloutsos, M. (2004). Long-range dependence ten years of internet traffic modeling. IEEE Internet Comput. 8, 5764.10.1109/MIC.2004.46CrossRefGoogle Scholar
Kataria, K. K. and Khandakar, M. (2022). Skellam and time-changed variants of the generalized fractional counting process. Fract. Calc. Appl. Anal. 25, 18731907.10.1007/s13540-022-00091-7CrossRefGoogle Scholar
Kataria, K. K. and Khandakar, M. (2022). Generalized fractional counting process. J. Theoret. Probab. 35, 27842805.10.1007/s10959-022-01160-6CrossRefGoogle Scholar
Kataria, K. K. and Khandakar, M. (2022). Time-changed space–time fractional Poisson process. Stoch. Anal. Appl. 40, 246267.10.1080/07362994.2021.1903329CrossRefGoogle Scholar
Khandakar, M. and Kataria, K. K. (2023). Some compound fractional Poisson processes. Fractal Fract. 7, 15.10.3390/fractalfract7010015CrossRefGoogle Scholar
Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam.Google Scholar
Leonenko, N. N., Meerschaert, M. M., Schilling, R. L. and Sikorskii, A. (2014). Correlation structure of time-changed Lévy processes. Commun. Appl. Ind. Math. 6, e-483, 22 pp.Google Scholar
Leonenko, N., Scalas, E. and Trinh, M. (2017). The fractional non-homogeneous Poisson process. Statist. Probab. Lett. 120, 147156.10.1016/j.spl.2016.09.024CrossRefGoogle Scholar
Maheshwari, A. and Vellaisamy, P. (2016). On the long-range dependence of fractional Poisson and negative binomial processes. J. Appl. Probab. 53, 9891000.10.1017/jpr.2016.59CrossRefGoogle Scholar
Orsingher, E. and Polito, F. (2012). The space fractional Poisson process. Statist. Probab. Lett. 82, 852858.10.1016/j.spl.2011.12.018CrossRefGoogle Scholar
Orsingher, E. and Toaldo, B. (2015). Counting processes with Bernštein intertimes and random jumps. J. Appl. Probab. 52, 10281044.10.1239/jap/1450802751CrossRefGoogle Scholar
Orsingher, E., Ricciuti, C. and Toaldo, B. (2016). Time-inhomogeneous jump processes and variable order operators. Potential Anal. 45, 435461.10.1007/s11118-016-9551-4CrossRefGoogle Scholar
Pagan, A. (1996). The econometrics of financial markets. J. Empir. Finance 3, 15102.10.1016/0927-5398(95)00020-8CrossRefGoogle Scholar
Polito, F. and Scalas, E. (2016). A generalization of the space fractional Poisson process and its connection to some Lévy processes. Electron. Commun. Probab. 21, 14 pp.10.1214/16-ECP4383CrossRefGoogle Scholar
Scalas, E. (2017). Continuous-time statistics and generalized relaxation equations. Eur. Phys. J. B 90, 5 pp.10.1140/epjb/e2017-80311-5CrossRefGoogle Scholar
Toaldo, B. (2015). Convolution-type derivatives, hitting-times of subordinators and time-changed $C_{0}$ -semigroups. Potential Anal. 42, 115140.10.1007/s11118-014-9426-5CrossRefGoogle Scholar
Vellaisamy, P. and Kumar, A. (2018). First-exit times of an inverse Gaussian process. Stochastics 90, 2948.10.1080/17442508.2017.1311897CrossRefGoogle Scholar
Vellaisamy, P. and Maheshwari, A. (2018). Fractional negative binomial and Pólya processes. Probab. Math. Statist. 38, 77101.Google Scholar