Hostname: page-component-5b777bbd6c-6lqsf Total loading time: 0 Render date: 2025-06-18T19:15:34.109Z Has data issue: false hasContentIssue false

Steady-state Dirichlet approximation of the Wright-Fisher model using the prelimit generator comparison approach of Stein’s method

Published online by Cambridge University Press:  27 May 2025

Anton Braverman*
Affiliation:
Northwestern University
Han Liang Gan*
Affiliation:
University of Waikato
*
*Postal address: Kellogg School of Management, 2211 Campus Drive, Evanston, IL 60208, USA. Email: anton.braverman@kellogg.northwestern.edu
**Postal address: Department of Mathematics, Private Bag 3105, Hamilton 3240, New Zealand. Email: han.gan@waikato.ac.nz

Abstract

The Wright–Fisher model, originating in Wright (1931) is one of the canonical probabilistic models used in mathematical population genetics to study how genetic type frequencies evolve in time. In this paper we bound the rate of convergence of the stationary distribution for a finite population Wright–Fisher Markov chain with parent-independent mutation to the Dirichlet distribution. Our result improves the rate of convergence established in Gan et al. (2017) from $\mathrm{O}(1/\sqrt{N})$ to $\mathrm{O}(1/N)$. The results are derived using Stein’s method, in particular, the prelimit generator comparison method.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Barbour, A. (1990). Stein’s method for diffusion approximations. Probab. Theory and Related Fields 84, 297322.10.1007/BF01197887CrossRefGoogle Scholar
Barbour, A. D. (1988). Stein’s method and Poisson process convergence. J. Appl. Probab. 175–184. A celebration of applied probability.10.2307/3214155CrossRefGoogle Scholar
Barbour, A. D. and Chen, L. H. Y. (eds) (2005). An Introduction to Stein’s Method. (Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore 4). Singapore University Press, Singapore; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. Lectures from the Meeting on Stein’s Method and Applications: a Program in Honor of Charles Stein held at the National University of Singapore, Singapore, July 28–August 31, 2003.Google Scholar
Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation (Oxford Studies in Probability 2). The Clarendon Press, Oxford University Press, Oxford Science Publications, New York.10.1093/oso/9780198522355.001.0001CrossRefGoogle Scholar
Braverman, A. (2022). The prelimit generator comparison approach of Stein’s method. Stochastic Systems 12, 181204.10.1287/stsy.2021.0085CrossRefGoogle Scholar
Braverman, A. (2023). The join-the-shortest-queue system in the Halfin-Whitt regime: Rates of convergence to the diffusion limit. Stochastic Systems 13, 139.10.1287/stsy.2022.0102CrossRefGoogle Scholar
Brown, T. C. and Phillips, M. J. (1999). Negative binomial approximation with Stein’s method. Methodol. Comput. Appl. Probab. 1, 407421.10.1023/A:1010094221471CrossRefGoogle Scholar
Chatterjee, S. (2014). A short survey of Stein’s method. In Proceedings of the International Congress of Mathematicians—Seoul 2014, Vol. IV. Kyung Moon Sa, Seoul. pp. 124.Google Scholar
Chen, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3, 534545.10.1214/aop/1176996359CrossRefGoogle Scholar
Döbler, C. (2015). Stein’s method of exchangeable pairs for the beta distribution and generalizations. Electron. J. Probab. 20, no. 109, 34.10.1214/EJP.v20-3933CrossRefGoogle Scholar
Ethier, S. N. and Norman, M. F. (1977). Error estimate for the diffusion approximation of the Wright–Fisher model. Proceedings of the National Academy of Sciences 74, 50965098.10.1073/pnas.74.11.5096CrossRefGoogle Scholar
Fulman, J. and Ross, N. (2013). Exponential approximation and Stein’s method of exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 10, 113.Google Scholar
Gan, H. L., Röllin, A. and Ross, N. (2017). Dirichlet approximation of equilibrium distributions in Cannings models with mutation. Adv. in Appl. Probab. 49, 927959.10.1017/apr.2017.27CrossRefGoogle Scholar
Gan, H. L. and Ross, N. (2021). Stein’s method for the Poisson-Dirichlet distribution and the Ewens sampling formula, with applications to Wright-Fisher models. Ann. Appl. Probab. 31, 625667.10.1214/20-AAP1600CrossRefGoogle Scholar
Goldstein, L. and Reinert, G. (2013). Stein’s method for the beta distribution and the Pólya-Eggenberger urn. J. Appl. Probab. 50, 11871205.10.1239/jap/1389370107CrossRefGoogle Scholar
Kasprzak, M. J. (2017). Diffusion approximations via Stein’s method and time changes. Preprint. Available at https://arxiv.org/abs/1701.07633.Google Scholar
Ley, C., Reinert, G. and Swan, Y. (2017). Stein’s method for comparison of univariate distributions. Probability Surveys 14, 152.10.1214/16-PS278CrossRefGoogle Scholar
Mackey, L. and Gorham, J. (2016). Multivariate Stein factors for a class of strongly log-concave distributions. Electron. Commun. Probab. 21, 14.Google Scholar
Ross, N. (2011). Fundamentals of Stein’s method. Probab. Surv. 8, 210293.10.1214/11-PS182CrossRefGoogle Scholar
Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (University of California, Berkeley, CA, 1970/1971), Vol. II: Probability theory. University California Press, Berkeley, CA, pp. 583602.10.1525/9780520423671-036CrossRefGoogle Scholar
Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes. Springer, New York.Google Scholar
Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97.10.1093/genetics/16.2.97CrossRefGoogle ScholarPubMed