Hostname: page-component-76c49bb84f-sz5hq Total loading time: 0 Render date: 2025-07-09T16:55:05.709Z Has data issue: false hasContentIssue false

Inheritance patterns of resistance to sodium channel blocker insecticides in Spodoptera frugiperda (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  01 July 2025

Ingrid Schimidt Kaiser
Affiliation:
Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
Aline Sartori Guidolin*
Affiliation:
Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
Rubens Hideo Kanno
Affiliation:
Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
Fernando Semmelroth de Assunção e Amaral
Affiliation:
Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
Carolina Pacchioni Monteiro
Affiliation:
Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
Celso Omoto
Affiliation:
Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
*
Corresponding author: Aline Sartori Guidolin; Email: aline.guidolin@usp.br

Abstract

The use of sodium channel blocker insecticides (SCBIs) has been one of the tools for managing the resistance of fall armyworm Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) to insecticides. In this study, we selected resistant strains of S. frugiperda to the SCBIs indoxacarb (Indoxacarb-R) and metaflumizone (Metaflumizone-R), under laboratory conditions, to evaluate the inheritance of resistance, cross-resistance to insecticides targeting voltage-gated sodium channels, and verify the absence of the F1845Y and V1848I mutations. The LC50 values of the susceptible (SUS) and the Indoxacarb-R strains to indoxacarb were 3.72 and 114.43 µg mL−1 respectively, and for the SUS and the Metaflumizone-R strains to metaflumizone were 4.57 and 3,141.96 µg mL−1, respectively, with resistance ratios of approximately 30-fold to indoxacarb and >600-fold to metaflumizone. The resistance of S. frugiperda to both insecticides was characterised as autosomal, incompletely recessive, and polygenic. Cross-resistance between indoxacarb and metaflumizone was detected. Moreover, Indoxacarb-R and Metaflumizone-R strains showed lower susceptibility to the pyrethroid insecticide lambda-cyhalothrin, possibly due to multiple resistance. The partial sequencing of the S. frugiperda sodium channel gene did not confirm the association of F1845Y and V1848I mutations with S. frugiperda resistance to indoxacarb and metaflumizone. These results will be important for implementing proactive insect resistance management programmes to preserve the lifetime of SCBIs in controlling S. frugiperda.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aboutalebian-Soureshjani, A, Rafiee-Dastjerdi, H, Naseri, B, Hassanpour, M and Khajehali, J (2023) Indoxacarb resistance in Iranian populations of Tuta absoluta (Lepidoptera: Gelechiidae): Cross-resistance, biochemical and molecular mechanisms. Pesticide Biochemistry and Physiology 196, . doi:10.1016/j.pestbp.2023.105633.CrossRefGoogle ScholarPubMed
Ahmad, M, Farid, A and Saeed, M (2018) Resistance to new insecticides and their synergism in Spodoptera exigua (Lepidoptera: Noctuidae) from Pakistan. Crop Protection 107, 7986. doi:10.1016/j.cropro.2017.12.028.CrossRefGoogle Scholar
Ahmad, M, Sayyed, AH, Saleem, MA and Ahmad, M (2008) Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Protection 27(10), 13671372. doi:10.1016/j.cropro.2008.05.003.CrossRefGoogle Scholar
Andow, DA and Alstad, DN (1998) F2 screen for rare resistance alleles. Journal of Economic Entomology 91(3), 572578. doi:10.1093/jee/91.3.572.CrossRefGoogle Scholar
Baloch, MN, Fan, J, Haseeb, M and Zhang, R (2020) Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Central Asia. Insects 11(3), . doi:10.3390/insects11030172.CrossRefGoogle ScholarPubMed
Bird, LJ, Drynan, LJ and Walker, PW (2017) The use of F2 screening for detection of resistance to emamectin benzoate, chlorantraniliprole, and indoxacarb in Australian populations of Helicoverpa armigera. Journal of Economic Entomology 110(2), 651659. (Lepidoptera: Noctuidae). doi:10.1093/jee/tox037.CrossRefGoogle ScholarPubMed
Bird, LJ, Walker, PW and Drynan, LJ (2023) Frequency and diversity of indoxacarb resistance in Australian Helicoverpa armigera. Journal of Economic Entomology 116(6), 21542165. (Lepidoptera: Noctuidae). doi:10.1093/jee/toad191.CrossRefGoogle ScholarPubMed
Bolzan, A, Padovez, FEO, Nascimento, ARB, Kaiser, IS, Lira, EC, Amaral, FSA, Kanno, RH, Malaquias, JB and Omoto, C (2019) Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Management Science 75(10), 26822689. doi:10.1002/ps.5376.CrossRefGoogle ScholarPubMed
Bourguet, D, Genissel, A and Raymond, M (2000) Insecticide resistance and dominance levels. Journal of Economic Entomology 93(6), 15881595. doi:10.1603/0022-0493-93.6.1588.CrossRefGoogle ScholarPubMed
Bourguet, D, Prout, M and Raymond, M (1996) Dominance of insecticide resistance presents a plastic response. Genetics 143(1), 407416. doi:10.1093/genetics/143.1.407.CrossRefGoogle ScholarPubMed
CABI (2024) Invasive Species Compendium. https://www.cabi.org/isc/fallarmyworm (accessed 15 January 2025).Google Scholar
Cao, GC and Han, ZJ (2015) Tebufenozide resistance is associated with sex-linked inheritance in Plutella xylostella. Insect Science 22(2), 235242. doi:10.1111/1744-7917.12081.CrossRefGoogle ScholarPubMed
Carnevale, V and Klein, ML (2017) Small molecule modulation of voltage gated sodium channels. Current Opinion in Structural Biology 43, 156162. doi:10.1016/j.sbi.2017.02.002.CrossRefGoogle ScholarPubMed
Carrière, Y (2003) Haplodiploidy, sex, and the evolution of pesticide resistance. Journal of Economic Entomology 96(6), 16261640. doi:10.1093/jee/96.6.1626.CrossRefGoogle ScholarPubMed
Carvalho, RA, Omoto, C, Field, LM, Williamson, MS and Bass, C (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One 8(4), . doi:10.1371/journal.pone.0062268.CrossRefGoogle ScholarPubMed
Cui, L, Wang, Q, Qi, H, Wang, Q, Yuan, H and Rui, C (2018) Resistance selection of indoxacarb in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Cross-resistance, biochemical mechanisms and associated fitness costs. Pest Management Science 74(11), 26362644. doi:10.1002/ps.5056.CrossRefGoogle ScholarPubMed
Diez-Rodríguez, GI and Omoto, C (2001) Herança da resistência de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a lambda-cialotrina. Neotropical Entomology 30(2), 311316. doi:10.1590/S1519-566X2001000200016.CrossRefGoogle Scholar
Garlet, CG, Gubiani, PS, Palharini, RB, Moreira, RP, Godoy, DN, Farias, JR and Bernardi, O (2021) Field‐evolved resistance to chlorpyrifos by Spodoptera frugiperda (Lepidoptera: Noctuidae): Inheritance mode, cross‐resistance patterns, and synergism. Pest Management Science 77(12), 53675374. doi:10.1002/ps.6576.CrossRefGoogle ScholarPubMed
Goergen, G, Kumar, PL, Sankung, SB, Togola, A and Tamò, M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One 11(10), . doi:10.1371/journal.pone.0165632.CrossRefGoogle Scholar
Guo, Z, Guo, Z, Gao, J, Huang, G, Wan, H, He, S, Xie, Y, Li, J and Ma, K (2022) Detection of insecticide susceptibility and target-site mutations in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae). International Journal of Pest Management 70(4), 880890. doi:10.1080/09670874.2022.2050835.CrossRefGoogle Scholar
Hafeez, M, Li, X, Ullah, F, Zhang, Z, Zhang, J, Huang, J, Chen, L, Siddiqui, JA, Ren, X, Zhou, S, Imran, M, Assiri, MA, Zalucki, MP, Lou, Y and Lu, Y (2022) Characterization of indoxacarb resistance in the fall armyworm: Selection, inheritance, cross-resistance, possible biochemical mechanisms, and fitness costs. Biology 11(12), . doi:10.3390/biology11121718.CrossRefGoogle ScholarPubMed
Hou, W, Staehelin, C, Elzaki, MEA, Hafeez, M, Luo, Y and Wang, R (2021) Functional analysis of CYP6AE68, a cytochrome P450 gene associated with indoxacarb resistance in Spodoptera litura (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 178, . doi:10.1016/j.pestbp.2021.104946.CrossRefGoogle ScholarPubMed
Hu, B, Zhang, S, Ren, M, Tian, X, Wei, Q, Mburu, DK and Su, J (2017) The expression of Spodoptera exigua P450 and UGT genes: Tissue specificity and response to insecticides. Insect Science 26(2), 199216. doi:10.1111/1744-7917.12538.CrossRefGoogle ScholarPubMed
Jeger, M, Bragard, C, Caffier, D, Candresse, T, Chatzivassiliou, E, Dehnen‐Schmutz, K, Gilioli, G, Gregoire, J, Jaques Miret, JA, Navarro, MN, Niere, B, Parnell, S, Potting, R, Rafoss, T, Rossi, V, Urek, G, van Bruggen, A, van der Werf, W, West, J, Winter, S, Gardi, C, Aukhojee, M and MacLeod, A (2017) Pest categorisation of Spodoptera frugiperda. EFSA Journal 15(7), . doi:10.2903/j.efsa.2017.4927.Google ScholarPubMed
Jun, S, Dongyang, L, Shuzhen, Z, Xun, Z, Hu, W and Jianhong, L (2017) Fitness and inheritance of metaflumizone resistance in Plutella xylostella. Pesticide Biochemistry and Physiology 139, . doi:10.1016/j.pestbp.2017.04.010.Google Scholar
Kaiser, IS, Kanno, RH, Bolzan, A, Amaral, FSA, Lira, EC, Guidolin, AS and Omoto, C (2021) Baseline response, monitoring, and cross-resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to sodium channel blocker insecticides in Brazil. Journal of Economic Entomology 114(2), 903913. doi:10.1093/jee/toab011.CrossRefGoogle ScholarPubMed
Kanga, LHB, Pree, DJ, Plapp, FW and van Lier, JL (2001) Sex-linked altered acetylcholinesterase resistance to carbamate insecticides in adults of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae). Pesticide Biochemistry and Physiology 71(1), 2939. doi:10.1006/pest.2001.2562.CrossRefGoogle Scholar
Kasten, P Jr, Precetti, AACM and Parra, JRP (1978) Dados biológicos comparativos de Spodoptera frugiperda (JE Smith, 1797) em duas dietas artificiais e substrato natural. Brazilian Journal of Agriculture 53, 6878.Google Scholar
Khakame, SK, Wang, X and Wu, Y (2013) Baseline toxicity of metaflumizone and lack of cross resistance between indoxacarb and metaflumizone in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 106(3), 14231429. doi:10.1603/ec12494.CrossRefGoogle ScholarPubMed
Li, F, Gong, X, Yuan, L, Pan, X, Jin, H, Lu, R and Wu, S (2022) Indoxacarb resistance-associated mutation of Liriomyza trifolii in Hainan, China. Pesticide Biochemistry and Physiology 183, . doi:10.1016/j.pestbp.2022.105054.CrossRefGoogle ScholarPubMed
Lira, EC, Bolzan, A, Nascimento, ARB, Amaral, FSA, Kanno, RH, Kaiser, IS and Omoto, C (2020) Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: Inheritance and cross-resistance to spinosad. Pest Management Science 76(8), 26742680. doi:10.1002/ps.5812.CrossRefGoogle ScholarPubMed
Marak, RM, Firake, DM, Sontakke, PP and Behere, GT (2017) Mode of inheritance of indoxacarb resistance in diamondback moth, Plutella xylostella (L.) and cross resistance to different groups of pesticides. Phytoparasitica 45, 549558. doi:10.1007/s12600-017-0618-6.CrossRefGoogle Scholar
Marín, DV, Castillo, DK, López-Lavalle, LAB, Chalarca, JR and Pérez, CR (2021) An optimized high-quality DNA isolation protocol for Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae). MethodsX 8, . doi:10.1016/j.mex.2021.101255.CrossRefGoogle Scholar
Mokbel, EMS, Moustafa, MAM, Alfuhaid, NA and Fouad, EA (2024) Characterization of Spodoptera littoralis (Lepidoptera: Noctuidae) resistance to indoxacarb: Inheritance mode, realized heritability, and fitness costs. Journal of Economic Entomology 117(2), 618628. doi:10.1093/jee/toae024.CrossRefGoogle ScholarPubMed
Montezano, DG, Sosa-Gómez, DR, Specht, A, Roque-Specht, VF, Sousa-Silva, JC, Paula-Moraes, SV, Peterson, JA and Hunt, TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26(2), 286300. doi:10.4001/003.026.0286.CrossRefGoogle Scholar
Muraro, DS, Oliveira Abbade Neto, D, Kanno, RH, Kaiser, IS, Bernardi, O and Omoto, C (2021) Inheritance patterns, cross‐resistance and synergism in Spodoptera frugiperda (Lepidoptera: Noctuidae) resistant to emamectin benzoate. Pest Management Science 77(11), 50495057. doi:10.1002/ps.6545.CrossRefGoogle ScholarPubMed
Nascimento, ARB, Fresia, P, Cônsoli, FL and Omoto, C (2015) Comparative transcriptome analysis of lufenuron-resistant and susceptible strains of Spodoptera frugiperda (Lepidoptera: Noctuidae). BMC Genomics 16, . doi:10.1186/s12864-015-2183-z.CrossRefGoogle ScholarPubMed
Nascimento, ARB, Pavinato, VAC, Rodrigues, JG, Silva-Brandão, KL, Consoli, FL, Michel, A and Omoto, C (2022) There is more than chitin synthase in insect resistance to benzoylureas: Molecular markers associated with teflubenzuron resistance in Spodoptera frugiperda. Journal of Pest Science 95, 129144. doi:10.1007/s10340-021-01373-4.CrossRefGoogle Scholar
Nascimento, ARB, Rodrigues, JG, Kanno, RH, Amaral, FSA, Malaquias, JB, Silva-Brandão, KL, Consoli, FL and Omoto, C (2023) Susceptible monitoring and comparative gene expression of susceptible and resistant strains of Spodoptera frugiperda to lambda-cyhalothrin and chlorpyrifos. Pest Management Science 79(6), 22062219. doi:10.1002/ps.7399.CrossRefGoogle ScholarPubMed
Nascimento, ARB, Rodrigues, JG, Kanno, RH, Amaral, FSA, Malaquias, JB, Silva-Brandão, KL, Cônsoli, FL and Omoto, C (2021) Susceptibility monitoring and the molecular characterization of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to lambda-cyhalothrin and chlorpyrifos. bioRxiv. doi: 10.1101/2021.11.17.469006.Google Scholar
Nehare, S, Ghodki, BS, Lande, GK, Pawade, V and Thakare, AS (2010) Inheritance of resistance and cross resistance pattern in indoxacarb-resistant diamondback moth Plutella xylostella L. Entomological Research 40(1), 1825. doi:10.1111/j.1748-5967.2009.00261.x.CrossRefGoogle Scholar
Okuma, DM, Bernardi, D, Horikoshi, RJ, Bernardi, O, Silva, AP and Omoto, C (2018) Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Management Science 74(6), 14411448. doi:10.1002/ps.4829.CrossRefGoogle ScholarPubMed
Overton, K, Maino, JL, Day, R, Umina, PA, Bett, B, Carnovale, D, Ekesi, S, Meagher, R and Reynolds, OL (2021) Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. Crop Protection 145, . doi:10.1016/j.cropro.2021.105641.CrossRefGoogle Scholar
Pang, S, You, W, Duan, L, Song, X, Li, X and Wang, C (2012) Resistance selection and mechanisms of oriental tobacco budworm (Helicoverpa assulta Guenee) to indoxacarb. Pesticide Biochemistry and Physiology 103(3), 219223. doi:10.1016/j.pestbp.2012.05.011.CrossRefGoogle Scholar
Pudasaini, R, Chou, M, Wu, T and Dai, S (2022) Insecticide Resistance and Control Failure Likelihood Analysis in Plutella xylostella (Lepidoptera: Plutellidae) Populations from Taiwan. Journal of Economic Entomology 115(3), 835843. doi:10.1093/jee/toac048.CrossRefGoogle ScholarPubMed
Robertson, JL, Preisler, HK and Russell, RM (2007a) PoloPlus: Probit and Logit Analysis User’s Guide. Petaluna, CA, USA: LeOra Software.Google Scholar
Robertson, JL, Savin, NE and Preisler, HK (2007b) Bioassays with Arthropods. 3rd edn, Boca Raton, Florida: CRC Press, .10.1201/9781420004045CrossRefGoogle Scholar
Roditakis, E, Mavridis, K, Riga, M, Vasakis, E, Morou, E, Rison, JL and Vontas, J (2017) Identification and detection of indoxacarb resistance mutations in the para sodium channel of the tomato leafminer, Tuta absoluta. Pest Management Science 73(8), 16791688. doi:10.1002/ps.4513.CrossRefGoogle ScholarPubMed
Roush, RT and Daly, JC (1990) The role of population genetics in resistance research and management. Pesticide Resistance in Arthropods. In Roush, RT and Tabashnik, BE (eds.), 1st edn. Boston, MA: Springer US, 97152. doi:10.1007/978-1-4684-6429-0_5.CrossRefGoogle Scholar
Roush, RT and McKenzie, JA (1987) Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology 32, 361380. doi:10.1146/annurev.en.32.010187.002045.CrossRefGoogle ScholarPubMed
Salgado, VL and Hayashi, JH (2007) Metaflumizone is a novel sodium channel blocker insecticide. Veterinary Parasitology 150(3), 182189. doi:10.1016/j.vetpar.2007.08.032.CrossRefGoogle ScholarPubMed
Samantsidis, GR, O’Reilly, AO, Douris, V and Vontas, J (2019) Functional validation of target-site resistance mutations against sodium channel blocker insecticides (SCBIs) via molecular modeling and genome engineering in Drosophila. Insect Biochemistry and Molecular Biology 104, 7381. doi:10.1016/j.ibmb.2018.12.008.CrossRefGoogle ScholarPubMed
Santos, V, Siqueira, H, Silva, J and Farias, M (2011) Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from the state of Pernambuco, Brazil. Neotropical Entomology 40(2), 264270. doi:10.1590/S1519-566X2011000200017.CrossRefGoogle ScholarPubMed
Sayyed, AH, Ahmad, M and Saleem, MA (2008) Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura. Journal of Economic Entomology 101(2), 472479. (Lepidoptera: Noctuidae). doi:10.1093/jee/101.2.472.CrossRefGoogle ScholarPubMed
Sayyed, AH and Wright, DJ (2006) Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Management Science 62(11), 10451051. doi:10.1002/ps.1270.CrossRefGoogle Scholar
Scott, JG (2019) Life and death at the voltage-sensitive sodium channel: Evolution in response to insecticide use. Annual Review of Entomology 64, 243257. doi:10.1146/annurev-ento-011118-112420.CrossRefGoogle ScholarPubMed
Shen, J, Li, D, Zhang, S, Zhu, X, Wan, H and Li, J (2017) Fitness and inheritance of metaflumizone resistance in Plutella xylostella. Pesticide Biochemistry and Physiology 139, 5359. doi:10.1016/j.pestbp.2017.04.010.CrossRefGoogle ScholarPubMed
Shen, J, Li, Z, Li, D, Wang, R, Zhang, S, You, H and Li, J (2020) Biochemical mechanisms, cross-resistance and stability of resistance to Metaflumizone in Plutella xylostella. Insects 11(5), . doi:10.3390/insects11050311.CrossRefGoogle ScholarPubMed
Shi, Y, Li, W, Zhou, Y, Liao, X and Shi, L (2022) Contribution of multiple overexpressed carboxylesterase genes to indoxacarb resistance in Spodoptera litura. Pest Management Science 78(5), 19031914. doi:10.1002/ps.6808.CrossRefGoogle ScholarPubMed
Shono, T, Zhang, L and Scott, JG (2004) Indoxacarb resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology 80(2), 106112. doi:10.1016/j.pestbp.2004.06.004.CrossRefGoogle Scholar
Silva, GA, Picanço, MC, Bacci, L, Crespo, ALB, Rosado, JF and Guedes, RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science 67(8), 913920. doi:10.1002/ps.2131.CrossRefGoogle ScholarPubMed
Silva, JE, Assis, CPO, Ribeiro, LMS and Siqueira, HAA (2016) Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. Journal of Economic Entomology 109(5), 21902195. doi:10.1093/jee/tow161.CrossRefGoogle ScholarPubMed
Silver, KS, Song, W, Nomura, Y, Salgado, VL and Dong, K (2010) Mechanism of action of sodium channel blocker insecticides (SCBIs) on insect sodium channels. Pesticide Biochemistry and Physiology 97(2), 8792. doi:10.1016/j.pestbp.2009.09.001.CrossRefGoogle ScholarPubMed
Sokal, RR and Rohlf, FJ (1995) Biometry: The principles and practice of statistics in biological research. 3rd edn. New York: W.H. Freeman and Co, pp. 451554.Google Scholar
Sparks, TC, Crossthwaite, AJ, Nauen, R, Banba, S, Cordova, D, Earley, F, Ebbinghaus-Kintscher, U, Fujioka, S, Hirao, A, Karmon, D, Kennedy, R, Nakao, T, Popham, HJR, Salgado, V, Watson, GB, Wedel, BJ and Wessels, FJ (2020) Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification - a tool for resistance management. Pesticide Biochemistry and Physiology 167, . doi:10.1016/j.pestbp.2020.104587.CrossRefGoogle Scholar
Sparks, TC and Lorsbach, BA (2017) Perspectives on the agrochemical industry and agrochemical discovery. Pest Management Science 73(4), 672677. doi:10.1002/ps.4457.CrossRefGoogle ScholarPubMed
Stone, BF (1968) A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of World Health Organ 38(2), 325326. PMCID: PMC2554319, PMID: 5302309Google ScholarPubMed
Su, J and Sun, XX (2014) High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop Protection 61, 5863. doi:10.1016/j.cropro.2014.03.013.CrossRefGoogle Scholar
Tian, X, Sun, X and Su, J (2014) Biochemical mechanisms for metaflumizone resistance in beet armyworm, Spodoptera exigua. Pesticide Biochemistry and Physiology 113, 814. doi:10.1016/j.pestbp.2014.06.010.CrossRefGoogle ScholarPubMed
Tsukamoto, M (1983) Methods of genetic analysis of insecticide resistance. Pest Resistance to Pesticides. In Georghiou, GP and Saito, T. Boston (eds.), MA: Springer US, 7198. doi:10.1007/978-1-4684-4466-7_3.CrossRefGoogle Scholar
Wang, J, Zheng, X, Yuan, J, Wang, S, Xu, B, Wang, S, Zhang, Y and Wu, Q (2021a) Insecticide resistance monitoring of the diamondback moth (Lepidoptera: Plutellidae) populations in China. Journal of Economic Entomology 114(3), 12811290. doi:10.1093/jee/toab027.CrossRefGoogle Scholar
Wang, Q, Rui, C, Wang, L, Nahiyoon, SA, Huang, W, Zhu, J, Ji, X, Yang, Q, Yuan, H and Cui, L (2021b) Field-evolved resistance to 11 insecticides and the mechanisms involved in Helicoverpa armigera. (Lepidoptera: Noctuidae). Pest Management Science 77(11), 50865095. doi:10.1002/ps.6548.CrossRefGoogle Scholar
Wang, XL, Su, W, Zhang, JH, Yang, YH, Dong, K and Wu, YD (2016) Two novel sodium channel mutations associated with resistance to indoxacarb and metaflumizone in the diamondback moth, Plutella xylostella. Insect Science 23(1), 5058. doi:10.1111/1744-7917.12226.CrossRefGoogle ScholarPubMed
Wing, KD, Sacher, M, Kagaya, Y, Tsurubuchi, Y, Mulderig, L, Connair, M and Schnee, M (2000) Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection 19(8-10), 537545. doi:10.1016/S0261-2194(00)00070-3.CrossRefGoogle Scholar
Zhang, S, Zhang, X, Shen, J, Li, D, Wan, H, You, H and Li, J (2017) Cross-resistance and biochemical mechanisms of resistance to indoxacarb in the diamondback moth. Plutella Xylostella Pesticide Biochemistry and Physiology 140, 8589. doi:10.1016/j.pestbp.2017.06.011.CrossRefGoogle ScholarPubMed
Zhang, X, Zhang, R, Yu, M, Liu, R, Liu, N, Teng, H, Pei, Y, Hu, Z and Zuo, Y (2024) Identification and detection of the V1848I indoxacarb resistance mutation in the beet armyworm, Spodoptera exigua. Pesticide Biochemistry and Physiology 203, . doi:10.1016/j.pestbp.2024.105991.CrossRefGoogle ScholarPubMed