No CrossRef data available.
 $C^*(R_+)\rtimes R^\times $
$C^*(R_+)\rtimes R^\times $Published online by Cambridge University Press: 26 December 2024
For an integral domain R satisfying certain conditions, we characterise the primitive ideal space and its Jacobson topology for the semigroup crossed product  $C^*(R_+) \rtimes R^\times $. We illustrate the result by the example
$C^*(R_+) \rtimes R^\times $. We illustrate the result by the example  $R=\mathbb {Z}[\sqrt {-3}]$.
$R=\mathbb {Z}[\sqrt {-3}]$.
The second author was supported by Fundamental Research Funds for the Central Universities (Grant No. 2023MS076).
 ${C}^{\ast }$
-Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III (Springer-Verlag, Berlin, 2006).Google Scholar
${C}^{\ast }$
-Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III (Springer-Verlag, Berlin, 2006).Google Scholar ${C}^{\ast }$
-algebras’, J. Funct. Anal. 266 (2014), 3937–3967.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras’, J. Funct. Anal. 266 (2014), 3937–3967.CrossRefGoogle Scholar $K$
-theory for algebraic actions from number theory’, Preprint, 2024, arXiv:2407.01952.Google Scholar
$K$
-theory for algebraic actions from number theory’, Preprint, 2024, arXiv:2407.01952.Google Scholar ${C}^{\ast }$
-algebras and groupoids’, J. Funct. Anal. 286 (2024), Article no. 110263.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras and groupoids’, J. Funct. Anal. 286 (2024), Article no. 110263.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras associated with the
${C}^{\ast }$
-algebras associated with the 
 $ax+b$
-semigroup over
$ax+b$
-semigroup over 
 $\mathbb{N}$
’, in:
$\mathbb{N}$
’, in: 
 $K$
-theory and Noncommutative Geometry, EMS Series of Congress Reports (eds. Cortiñas, G., Cuntz, J., Karoubi, M., Nest, R. and Weibel, C. A.) (European Mathematical Society, Zürich, 2008), 201–215.Google Scholar
$K$
-theory and Noncommutative Geometry, EMS Series of Congress Reports (eds. Cortiñas, G., Cuntz, J., Karoubi, M., Nest, R. and Weibel, C. A.) (European Mathematical Society, Zürich, 2008), 201–215.Google Scholar ${C}^{\ast }$
-algebras of Toeplitz type associated with algebraic number fields’, Math. Ann. 355 (2013), 1383–1423.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras of Toeplitz type associated with algebraic number fields’, Math. Ann. 355 (2013), 1383–1423.CrossRefGoogle Scholar $K$
-theory of crossed products by automorphic semigroup actions’, Q. J. Math. 64 (2013), 747–784.CrossRefGoogle Scholar
$K$
-theory of crossed products by automorphic semigroup actions’, Q. J. Math. 64 (2013), 747–784.CrossRefGoogle Scholar ${C}^{\ast }$
-algebra of an integral domain’, in: Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings, 11 (eds. Blanchard, E., Ellwood, D., Khalkhali, M., Marcolli, M., Moscovici, H. and Popa, S.) (American Mathematical Society, Providence, RI, 2010), 149–170.Google Scholar
${C}^{\ast }$
-algebra of an integral domain’, in: Quanta of Maths: Conference in Honor of Alain Connes, Clay Mathematics Proceedings, 11 (eds. Blanchard, E., Ellwood, D., Khalkhali, M., Marcolli, M., Moscovici, H. and Popa, S.) (American Mathematical Society, Providence, RI, 2010), 149–170.Google Scholar ${C}^{\ast }$
-algebras associated to certain endomorphisms of discrete groups’, New York J. Math. 8 (2002), 99–109.Google Scholar
${C}^{\ast }$
-algebras associated to certain endomorphisms of discrete groups’, New York J. Math. 8 (2002), 99–109.Google Scholar $a$
-adic numbers’, Rev. Roumaine Math. Pures Appl. 59 (2014), 331–370.Google Scholar
$a$
-adic numbers’, Rev. Roumaine Math. Pures Appl. 59 (2014), 331–370.Google Scholar ${C}^{\ast }$
-algebra of Bost and Connes’, Math. Ann. 318 (2000), 433–451.CrossRefGoogle Scholar
${C}^{\ast }$
-algebra of Bost and Connes’, Math. Ann. 318 (2000), 433–451.CrossRefGoogle Scholar ${C}^{\ast }$
-algebra of the integers and its representations’, J. Funct. Anal. 262 (2012), 1392–1426.CrossRefGoogle Scholar
${C}^{\ast }$
-algebra of the integers and its representations’, J. Funct. Anal. 262 (2012), 1392–1426.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras and amenability of semigroups’, J. Funct. Anal. 262 (2012), 4302–4340.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras and amenability of semigroups’, J. Funct. Anal. 262 (2012), 4302–4340.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras of
${C}^{\ast }$
-algebras of 
 $ax+b$
-semigroups’, Trans. Amer. Math. Soc. 368 (2016), 4417–4437.CrossRefGoogle Scholar
$ax+b$
-semigroups’, Trans. Amer. Math. Soc. 368 (2016), 4417–4437.CrossRefGoogle Scholar ${C}^{\ast }$
-algebraic case’, J. Operator Theory 75 (2016), 163–193.CrossRefGoogle Scholar
${C}^{\ast }$
-algebraic case’, J. Operator Theory 75 (2016), 163–193.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras associated with left cancellative semigroups’, Proc. Edinb. Math. Soc. (2) 57 (2014), 533–564.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras associated with left cancellative semigroups’, Proc. Edinb. Math. Soc. (2) 57 (2014), 533–564.CrossRefGoogle Scholar ${C}^{\ast }$
-algebras of right LCM semigroups’, J. Funct. Anal. 268 (2015), 3326–3356.CrossRefGoogle Scholar
${C}^{\ast }$
-algebras of right LCM semigroups’, J. Funct. Anal. 268 (2015), 3326–3356.CrossRefGoogle Scholar