Hostname: page-component-857557d7f7-qdphv Total loading time: 0 Render date: 2025-11-28T23:59:12.783Z Has data issue: false hasContentIssue false

A NOTE ON SOME QUADRATICS AND CUBICS OVER FINITE FIELDS

Published online by Cambridge University Press:  28 November 2025

EILEEN X. PAN*
Affiliation:
School of Mathematics, Monash University , Victoria 3800, Australia Mathematics Institute, University of Warwick , Coventry CV4 7AL, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

We determine the conditions for the reducibility of some parametrised families of quadratic and cubic polynomials over finite fields, and count the number of irreducible trinomials. The existence of a factorisation of these polynomials plays an important role in studying the finite groups of exceptional Lie types.

MSC classification

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

1 Introduction

The reducibility of polynomials over finite fields is important for many applications, including coding theory and cryptography. The well-known Berlekamp Algorithm [Reference Berlekamp2] provides a method for factorising such polynomials. A more challenging problem is to decide reducibility for parametrised families of polynomials. For example, Dickson [Reference Dickson5] determined for which nonzero parameters $\alpha ,\beta $ , in the finite field $\mathbb {F}_{p^n}$ with $p>3$ a prime, the polynomial $x^3+\alpha x+\beta $ is reducible over $\mathbb {F}_{p^n}$ . The analogous characterisation was obtained by Williams [Reference Williams9] for finite fields of characteristic $2$ and $3$ . Polynomials of this form are trinomials as they have exactly three nontrivial terms. Von zur Gathen [Reference von zur Gathen8] has considered the irreducibility of trinomials over finite fields and formulated some conjectures on their distribution. This line of research was continued by Ahmadi in [Reference Ahmadi1], who solved some of these conjectures and also proved irreducibility results for trinomials of the form $x^d+\alpha x^k+\beta $ , where $\alpha , \beta \in \mathbb {F}_q^\times $ with even degree d.

Results of this flavour have applications in group theory. For example, in the course of classifying the conjugacy classes of the simple group of Lie type $G_2(q)$ , Chang [Reference Chang4] required knowledge of the parameters $\zeta \in \mathbb {F}_q$ for which $x^3-3x-\zeta $ is irreducible over $\mathbb {F}_q$ . Similarly, the determination of the conjugacy classes in $F_4(2^n)$ required Shinoda [Reference Shinoda7] to classify those parameters $\zeta \in \mathbb {F}_{2^n}$ for which $x^3+x+\zeta $ is irreducible and, at the same time, $x^2+\zeta x+\zeta ^2 +1$ is reducible.

This note is also motivated by a problem in group theory (see [Reference Pan6]): the suborbit classification of the (primitive) actions of $G_2(q)$ requires a detailed analysis of the reducibility of $x^2+\zeta x-\zeta $ and $x^3-3x^2-\zeta $ with parameter $\zeta \in \mathbb {F}_q$ . We consider a slightly more general case and state our main result as follows.

Theorem 1.1. Let q be a prime power, $\gamma \in \mathbb {F}_q, \zeta \in \mathbb {F}_q^\times $ , and

$$ \begin{align*}P = x^2 + \zeta x - \zeta \quad \text{and} \quad Q = x^3 - \gamma x^2 - \zeta.\end{align*} $$

For $q \equiv 0,1 \bmod 3$ , if $\gamma = 3$ or $\gamma ^2+3\gamma +9=0$ , then at least one of P and Q is reducible. If $q \equiv 2 \bmod 3$ and $\gamma = 3$ , then there are $\tfrac {1}{3}(q+1)$ elements $\zeta \in \mathbb {F}_q^\times $ such that both P and Q are irreducible.

2 Proof of Theorem 1.1

Throughout, let $q=p^n$ be a prime power. If $p=3$ , then, by assumption, we have $\gamma = 0$ and Q always has a root since $c\mapsto c^3$ is a Frobenius automorphism of $\mathbb {F}_{3^n}$ . For $p \ne 3$ , by construction, P and Q are trinomials over $\mathbb {F}_q$ .

If $p> 3$ , then rewriting $x = X+3^{-1} \gamma $ yields $Q = X^3 -3^{-1} \gamma ^2 X - (\zeta +2{\cdot }27^{-1}\gamma ^3)$ . Thus, in this case, [Reference Dickson5, Theorems 1 and 3] applies, and P and Q are both irreducible only if we have $\zeta ^2+4\zeta $ is a nonsquare and $-\zeta (4\gamma ^3+27\zeta )$ is a square in $\mathbb {F}_q$ , and ${2^{-1}(\mu \sqrt {-3}+\zeta )+27^{-1}\gamma ^3}$ is a noncube in the field extension $\mathbb {F}_q(\sqrt {-3})$ , where $\mu \in \mathbb {F}_q$ with $81\mu ^2=-\zeta (4\gamma ^2+27\zeta )$ . This answers the irreducibility question, but it remains to count. Unfortunately, a similar result cannot be easily deduced from Williams’ work [Reference Williams9] for $p=2$ . In the following, we present a uniform proof for all p (excluding $p=3$ as mentioned above). Since P and Q are reducible if and only if they have a root, for a fixed $\gamma \in \mathbb {F}_q^\times $ , we consider

$$ \begin{align*}\mathcal{S}_1 = \{\zeta \in \mathbb{F}_q^\times \mid P \text{ has roots in } \mathbb{F}_q^\times\} \quad\text{and}\quad \mathcal{S}_2 = \{\zeta \in \mathbb{F}_q^\times \mid Q \text{ has roots in } \mathbb{F}_q^\times\}.\end{align*} $$

We will determine the size of these sets separately; then determine $|\mathcal{S}_1 \cup \mathcal{S}_2|$ from $|\mathcal {S}_1 \cup \mathcal {S}_2| = |\mathcal {S}_1| + |\mathcal {S}_2| - |\mathcal {S}_1 \cap \mathcal {S}_2|$ .

The polynomial P is reducible if and only if there are $u,v\in \mathbb {F}_q^\times $ such that $P = (x - u)(x - v)$ , which is equivalent to $uv = -\zeta $ and $u + v = -\zeta $ . Thus, P is reducible if and only if $\zeta = {v^2}{(1 - v)^{-1}}$ for some $v\in \mathbb {F}_q\backslash \{0,1\}$ . If we define $f\colon \mathbb {F}_q\backslash \{0, 1\} \to \mathbb {F}_q^\times $ by $f(c)={c^2}{(1 - c)^{-1}}$ , then $|\mathcal {S}_1|=|\mathrm {Im~} f|$ . Note that $f(s)=f(t)$ with $s,t\notin \{0,1\}$ if and only if $s = t$ or $t = {s}{(s-1)^{-1}}$ . Since $s = {s}{(s-1)^{-1}}$ if and only if q is odd and $s=2$ ,

$$ \begin{align*} |\mathcal{S}_1| = |\mathrm{Im~} f|= \begin{cases} \tfrac12(q - 2) &\text{if } q \equiv 0 \bmod 2,\\ \tfrac12(q - 1) &\text{otherwise}. \end{cases}\end{align*} $$

Now, we consider $\mathcal {S}_2$ . For a fixed $\gamma \in \mathbb {F}_q^\times $ , we know that Q has a root $u\in \mathbb {F}_q$ if and only if $\zeta =u^3-\gamma u^2$ . Since $\zeta \ne 0$ , it follows that $|\mathcal {S}_2| = |\mathrm {Im~} g|$ , where $g \colon \mathbb {F}_q\setminus \{0,\gamma \} \to \mathbb {F}_q^\times $ is the map $g(c)=c^3 - \gamma c^2$ . Note that $g(s) = g(t)$ for $s,t\notin \{0,\gamma \}$ if and only if $s = t$ or $t = ks$ for some $k \in \mathbb {F}_q\backslash \{0,1\}$ such that

$$ \begin{align*} g(ks)-g(s)=s^2(k-1) (k^2 s+k s-\gamma k+s-\gamma) = 0. \end{align*} $$

Since $s^2(k-1)\ne 0$ , the latter is equivalent to $\ell _s(k)=0$ , where

$$ \begin{align*} \ell_s(k)=k^2+r_sk+r_s\quad\text{with}\quad r_s=1-\gamma s^{-1} \ne 0.\end{align*} $$

Note that any such k satisfies $ks\notin \{0,\gamma \}$ (for otherwise, $r_s=0$ or $\ell _s=1$ , which is a contradiction). Thus, we are interested in

$$ \begin{align*}{\kappa(s)=|\{k\in\mathbb{F}_q\setminus\{0,1\}\mid \ell_s(k)=0\}|},\end{align*} $$

which informs us of $\mathrm {Im~} g$ . Suppose $\ell _s(k)$ has roots $u,v$ ; note that $u,v\notin \{0,-1\}$ . Then, $u+v=-r_s$ and $uv=r_s$ , so $r_s=-v^2(1+v)^{-1}$ . Moreover, $k=1$ is a root of $\ell _s(k)$ if and only if q is odd and $r_s = -2^{-1}$ . We have $u=v$ if and only if $p=3$ and $r_s=1$ , or $q \equiv \pm 1\bmod 6$ and $s\in \{-3^{-1} \gamma ,\gamma \}$ . With such notation, since $s \ne \gamma $ by assumption,

$$ \begin{align*}\kappa(s) = \begin{cases} 0 & \text{if } r_s \notin \{-{v^2}{(1+v)^{-1}}\mid v \in \mathbb{F}_q\backslash\{0,-1\}\};\\ 1 &\text{if } q \equiv \pm 1\bmod 6 \text{ and } r_s\in\{4, -2^{-1}\};\\ 2 & \text{if } r_s \in \{-{v^2}{(1+v)^{-1}}\mid v \in \mathbb{F}_q\backslash\{0,-1\}\}\setminus\{1,4,-2^{-1}\}; \end{cases}\end{align*} $$

recall that $p=2$ is allowed, in which case $-2^{-1}$ does not occur. Since the map g restricted to the subset $\mathcal {K}_1=\{s\in \mathbb {F}_q\backslash \{0,\gamma \}\mid \kappa (s)=0\}$ is injective, restricted on $\mathcal {K}_2=\{s\in \mathbb {F}_q\backslash \{0,\gamma \}\mid \kappa (s)=1\}$ is $2$ -to- $1$ , restricted to $\mathcal {K}_3=\{s\in \mathbb {F}_q\backslash \{0,\gamma \}\mid \kappa (s)=2\}$ is $3$ -to- $1$ , and $\mathcal {K}_1\sqcup \mathcal {K}_2\sqcup \mathcal {K}_3 = \mathbb {F}_q\backslash \{0,\gamma \}$ ,

$$ \begin{align*}|\mathrm{Im~} g| =|\mathcal{K}_1|+\tfrac12|\mathcal{K}_2|+\tfrac13|\mathcal{K}_3|.\end{align*} $$

More specifically, observe that for any ${c \ne 1}$ , there exists $s = \gamma (1-c)^{-1}$ such that $r_s=c$ . Also, by construction, $r_s\ne 1$ and $1 \in \{-{v^2}{(1+v)^{-1}}\mid v \in \mathbb {F}_q\backslash \{0,-1\}\}$ if and only if $q \equiv 0,1 \bmod 3$ . Moreover, by symmetry,

$$ \begin{align*}|\mathcal{K}_1| = |\{-{v^2}{(1+v)^{-1}}\mid v \in \mathbb{F}_q\backslash\{0,-1\}\}|=|\mathrm{Im~} f|\end{align*} $$

and

$$ \begin{align*} |\mathcal{K}_3|&=|\{-{v^2}{(1+v)^{-1}}\mid v \in \mathbb{F}_q\backslash\{0,-1\}\}\setminus\{1,4,-2^{-1}\}|\\ &= \begin{cases} \tfrac12(q - 2) &\text{if } q \equiv 2 \bmod 6,\\ \tfrac12(q - 2)-1 &\text{if } q \equiv 4 \bmod 6,\\ \tfrac12(q - 1)-3 &\text{if } q \equiv 1 \bmod 6,\\ \tfrac12(q - 1)-2 &\text{if } q \equiv 5 \bmod 6.\\ \end{cases} \end{align*} $$

We therefore deduce that

$$ \begin{align*}|\mathcal{S}_2| = |\mathrm{Im~} g| =\begin{cases} q - 2 - \tfrac12{(q - 2)} + \tfrac16{(q-2)} = \tfrac23{(q-2)} &\text{if } q \equiv 2 \bmod 6,\\ q - 2 - \tfrac12{(q - 2)} + 1 + \tfrac16{(q-4)} = \tfrac23(q-1) &\text{if } q \equiv 4 \bmod 6,\\ q - 2 - \tfrac12{(q - 1)} + 1 + \tfrac22 + \tfrac16{(q-7)} = \tfrac23(q-1) &\text{if } q \equiv 1 \bmod 6,\\ q - 2 - \tfrac12{(q - 1)} + \tfrac22 + \tfrac16{(q-5)} = \tfrac23(q-2) &\text{if } q \equiv 5 \bmod 6. \end{cases} \end{align*} $$

In summary,

$$ \begin{align*}|\mathcal{S}_2| = |\mathrm{Im~} g| = \begin{cases} \tfrac23(q-1) &\text{ if } q \equiv 1 \bmod 3,\\\tfrac23(q-2) &\mbox{ if } q \equiv 2 \bmod 3. \end{cases} \end{align*} $$

It remains to examine $\mathcal {S}_1 \cap \mathcal {S}_2$ . With the same setup as above, $\zeta \in \mathcal {S}_1 \cap \mathcal {S}_2$ if and only if there exist $s \in \mathbb {F}_q \backslash \{0, \gamma \}$ and $t \in \mathbb {F}_q\backslash \{0, 1\}$ such that $\zeta = f(t) = g(s)$ , where $f,g$ are as defined above. The latter equality is equivalent to $h(t)=0$ , where

$$ \begin{align*}h(t)=t^2 + (s^3 - \gamma s^2)t - (s^3 - \gamma s^2).\end{align*} $$

When $p \ne 2$ , the quadratic equation $h(t)=0$ in t holds for some $t \in \mathbb {F}_q\backslash \{0, 1\}$ if and only if

$$ \begin{align*}c(s)=s^2 (s-\gamma) (s^3-\gamma s^2+4)\end{align*} $$

is a square in $\mathbb {F}_q$ . In particular, given $s \notin \{0, \gamma \}$ , we see $c(s) = 0$ if and only if $-4=s^3-\gamma s^2$ . If $\gamma ^2+3\gamma +9=0$ , then $q\equiv 1 \bmod 3$ and $\gamma = (-3\pm 3w)2^{-1}$ for $w \in \mathbb {F}_q^\times $ such that $-3=w^2$ , and

$$ \begin{align*}c(s)=s^2 (s-\gamma) (s+3^{-1}\gamma)(s-2{\cdot}3^{-1}\gamma)^2.\end{align*} $$

Note that when $\gamma =3$ , the same factorisation exists; that is,

$$ \begin{align*}c(s)=s^2 (s-\gamma) (s+1)(s-2)^2.\end{align*} $$

For $p \ne 2$ , if $q \equiv 1 \bmod 3$ , then let $\gamma \in \{3, \ (-3+3w)2^{-1}, \ (-3-3w)2^{-1}\}$ ; if $q \equiv 2 \bmod 3$ , then let $\gamma = 3$ . Recall that if $p \ne 2$ , then $\kappa (s)=2$ if and only if the discriminant $s^{-2}(\gamma -s)(\gamma +3s)$ of $\ell _s(k)$ is a square in $\mathbb {F}_q^\times $ , and $\kappa (s)=0$ if and only if $(\gamma -s)(\gamma +3s)$ is a nonsquare in $\mathbb {F}_q^\times $ . Since $-3$ is a square in $\mathbb {F}_q^\times $ if $q \equiv 2 \bmod 3$ , and is a nonsquare if $q \equiv 1 \bmod 3$ and $-3(s-\gamma )(s+3^{-1}\gamma )=(\gamma -s)(3s+\gamma )$ , it follows that

$$ \begin{align*} \mathcal{S}_1 \cap \mathcal{S}_2 & = \{-4\} \cup \{s^3 - \gamma s^2 \mid s \in \mathbb{F}_q\backslash\{0,\gamma\} \text { and }c(s) \text{ is a square in } \mathbb{F}_q^\times\}\\ & = \{-4\} \cup \begin{cases} \{s^3 - \gamma s^2 \mid s \in \mathbb{F}_q\backslash\{0,\gamma\} \text{ and } \kappa(s)=2\} \quad \text{ if }q \equiv 1 \bmod 6,\\ \{s^3 - \gamma s^2 \mid s \in \mathbb{F}_q\backslash\{0,\gamma\} \text{ and } \kappa(s)=0\} \quad \text{ if }q \equiv 5 \bmod 6.\\ \end{cases} \end{align*} $$

Now, consider the case where $p = 2$ and $q = 2^n$ . The trace map over $\mathbb {F}_{2^n}$ is defined by

$$ \begin{align*} \operatorname{\mathrm{tr}} \colon \mathbb{F}_{2^n} \to \{0, 1\}, \quad s \mapsto \bigg(\sum_{i = 0}^{n - 1} s^{(2^i)}\bigg) \bmod 2. \end{align*} $$

It follows that $\operatorname {\mathrm {tr}}(x)=\operatorname {\mathrm {tr}}(x^2)$ and $\operatorname {\mathrm {tr}}(x)+\operatorname {\mathrm {tr}}(y)=\operatorname {\mathrm {tr}}(x+y)$ for all $x,y\in \mathbb {F}_{2^n}$ . We now consider $\gamma = 1$ or $\gamma ^2+\gamma +1=0$ . Note that there exists $\gamma \in \mathbb {F}_q^\times $ such that $\gamma ^2+\gamma +1=0$ if and only if $q \equiv 1 \bmod 3$ and $\gamma ^3 =1$ . Moreover, it is well known that $x^2+\alpha x + \beta $ for $\alpha , \beta \in \mathbb {F}_q^\times $ is reducible over $\mathbb {F}_q$ if and only if $\operatorname {\mathrm {tr}}(a^{-2}b)=0$ (see [Reference Berlekamp3, Theorem 6.69]). Thus, $h(t)=0$ has:

  • two solutions if and only if $\operatorname {\mathrm {tr}}({s^{-2}(s + \gamma )^{-1}}) = 0$ and

  • no solution if and only if $\operatorname {\mathrm {tr}}({s^{-2}(s + \gamma )^{-1}}) = 1$ .

However, when $p = 2$ , the quadratic $\ell _s(k)=0$ has two solutions if and only if $\operatorname {\mathrm {tr}}({s}{(s + \gamma )^{-1}}) = 0$ and no solution if and only if $\operatorname {\mathrm {tr}}({s}{(s + \gamma )^{-1}}) = 1$ . Observe that if $\gamma ^3=1$ , then $1+s^3=\gamma ^3+s^3=(\gamma +s)(\gamma ^2+s^2+ \gamma s)$ and so

$$ \begin{align*}\operatorname{\mathrm{tr}}({s^{-2}(s + \gamma)^{-1}}) + \operatorname{\mathrm{tr}}({s}{(s + \gamma)^{-1}}) = \operatorname{\mathrm{tr}}(\gamma^2s^{-2}) + \operatorname{\mathrm{tr}}(\gamma s^{-1}) + \operatorname{\mathrm{tr}}(1) = \operatorname{\mathrm{tr}}(1).\end{align*} $$

Since $\operatorname {\mathrm {tr}}(1)=0$ if and only if $q \equiv 1 \bmod 3$ , and $\operatorname {\mathrm {tr}}(1)=1$ if and only if $q\equiv 2 \bmod 3$ , it follows that

$$ \begin{align*} \mathcal{S}_1 \cap \mathcal{S}_2 & = \{s^3 + \gamma s^2 \mid s \in \mathbb{F}_q\backslash\{0,\gamma\} \text { and } \operatorname{\mathrm{tr}}({s^{-2}(s + 1)^{-1}}) = 0\}\\ & = \begin{cases} \{s^3 + \gamma s^2 \mid s \in \mathbb{F}_q\backslash\{0,\gamma\} \text{ and } \kappa(s)=2\} & \text{if } q \equiv 4 \bmod 6,\\ \{s^3 + \gamma s^2 \mid s \in \mathbb{F}_q\backslash\{0,\gamma\} \text{ and } \kappa(s)=0\} & \text{if } q \equiv 2 \bmod 6. \end{cases} \end{align*} $$

Together with our discussion for odd q above, we have shown that

$$ \begin{align*} |\mathcal{S}_1 \cap \mathcal{S}_2| = \begin{cases} \tfrac{1}{6}(q - 1) \quad\text{if } q \equiv 1 \bmod 6,\\ \tfrac{1}{2}(q - 1) \quad\text{if } q \equiv 5 \bmod 6,\\ \tfrac{1}{6}(q - 4) \quad\text{if } q \equiv 4 \bmod 6,\\ \tfrac{1}{2}(q - 2) \quad\text{if } q \equiv 2 \bmod 6. \end{cases} \end{align*} $$

In summary, applying the Principle of Inclusion-Exclusion, we see that

$$ \begin{align*}|\mathcal{S}_1 \cup \mathcal{S}_2| = \begin{cases} q - 1 &\text{if } q \equiv 1 \bmod 3 \text{ and } \gamma =3 \text{ or } \gamma^2+3\gamma+9=0,\\ \tfrac{2}{3}(q - 2) &\text{if } q \equiv 2 \bmod 3 \text{ and } \gamma = 3. \end{cases} \end{align*} $$

This completes the proof.

3 Further discussion

Although our proof for the main result excludes the case $p=3$ , our discussion for $\mathcal {S}_2$ remains valid for any $\gamma \in \mathbb {F}_q^\times $ in all characteristics. More specifically, from the discussion above, we also obtain the following result.

Corollary 3.1. Let q be a prime power, $\zeta \in \mathbb {F}_q^\times $ and

$$ \begin{align*}Q = x^3 - \gamma x^2 - \zeta.\end{align*} $$

Then, for each $\gamma \in \mathbb {F}_q^\times $ ,

$$ \begin{align*}|\{\zeta \in \mathbb{F}_q^\times \mid Q \text{ is reducible}\}|= \begin{cases} \tfrac13(2q-3) &\text{if } q \equiv 0 \bmod 3,\\ \tfrac23(q-1) &\text{if } q \equiv 1 \bmod 3,\\ \tfrac23(q-2) &\text{if } q \equiv 2 \bmod 3. \end{cases} \end{align*} $$

The next result is a corollary of [Reference Williams9, Theorem 1] that turns out to be useful in finding suborbit representatives in primitive $G_2(q)$ -actions, where $G_2(q)$ is the finite simple group of exceptional Lie type $G_2$ over $\mathbb {F}_q$ . In the case where $p=2$ , setting $x = y+1$ yields the depressed form of Q, namely, $D = y^3+\gamma y+\zeta $ , which has the same reducibility as Q. In particular, by assumption, we have $\gamma ^3=1$ if $q \equiv 1\bmod 3$ and $\gamma = 1$ if $q \equiv 2\bmod 3$ . For the sake of completeness, we include a restatement of [Reference Williams9, Theorem 1].

Theorem 3.2 [Reference Williams9, Theorem 1].

Let $q = 2^{n}$ for some positive integer n. Let $D=x^3+\gamma x + \zeta $ , where $\gamma \in \mathbb {F}_q, \zeta \in \mathbb {F}_q^\times $ . Let $t_1,t_2$ denote the roots of $t^2+\zeta t +\gamma ^3 = 0$ . Then, $t_1, t_2$ lie in $\mathbb {F}_q$ if $\operatorname {\mathrm {tr}}(\gamma ^3 \zeta ^{-2})=0$ and in $\mathbb {F}_{q^2}$ otherwise.

  1. (a) D has three distinct roots in $\mathbb {F}_q$ if and only if $\operatorname {\mathrm {tr}}(\gamma ^3 \zeta ^{-2}) = \operatorname {\mathrm {tr}}(1)$ and $t^2 + \zeta t+\gamma ^3$ has roots $t_1, t_2$ that are cubes in $\mathbb {F}_q$ (n even) or in $\mathbb {F}_{q^2}$ (n odd).

  2. (b) D has precisely one root in $\mathbb {F}_q$ if and only if $\operatorname {\mathrm {tr}}(\gamma ^3 \zeta ^{-2}) \ne \operatorname {\mathrm {tr}}(1)$ .

  3. (c) D has no root in $\mathbb {F}_q$ if and only if $\operatorname {\mathrm {tr}}(\gamma ^3 \zeta ^{-2}) = \operatorname {\mathrm {tr}}(1)$ and $t^2 + \zeta t+\gamma ^3$ has roots $t_1, t_2$ that are noncubes in $\mathbb {F}_q$ (n even) or in $\mathbb {F}_{q^2}$ (n odd).

Corollary 3.3. Let $q = 2^{n}$ for some positive integer n and let $\zeta \in \mathbb {F}_q^\times $ . Let $\xi $ be a primitive element of $\mathbb {F}_{q^2}^\times $ and

$$ \begin{align*}\epsilon=\begin{cases} 1 & \text{if } q \equiv 1 \bmod 3,\\ -1 & \text{if } q \equiv 2 \bmod 3. \end{cases}\end{align*} $$

Let $D=x^3 + \gamma x + \zeta $ , where $\zeta \in \mathbb {F}_q^\times $ and $\gamma = 1$ if n is odd, or $\gamma \in \mathbb {F}_q$ such that $\gamma ^3=1$ if n is even. Then, the following hold.

  1. (a) D is irreducible over $\mathbb {F}_q$ if and only if $\zeta = \eta ^{3j+1} + \eta ^{-3j-1}$ for some j with $0 \le j < \tfrac 13(q-\epsilon )$ , where $\eta = \xi ^{q+\epsilon }$ .

  2. (b) D has precisely one root in $\mathbb {F}_q$ if and only if $\zeta = \nu ^k + \nu ^{-k}$ for some k with $0 < k \le \lfloor \tfrac {1}{2}(q+\epsilon )\rfloor $ , where $\nu = \xi ^{q-\epsilon }$ .

  3. (c) If D is irreducible over $\mathbb {F}_q$ , then $x^2+\zeta (\zeta +1)^{-1} x + \zeta (\zeta + 1)^{-1}$ is reducible over $\mathbb {F}_q$ .

  4. (d) If $r \in \mathbb {F}_q^\times $ is a root of D, then $x^2+\zeta x+\zeta $ and $x^2 + rx + r$ have the same reducibility over $\mathbb {F}_q$ .

Proof. (a) It follows from Theorem 3.2(c) that D is irreducible if and only if $\operatorname {\mathrm {tr}}(\zeta ^{-2}) = \operatorname {\mathrm {tr}}(1)$ and the roots of $x^2 + \zeta x + 1$ (in $\mathbb {F}_q$ if n is even or in $\mathbb {F}_{q^2}$ if n is odd) are noncubes. Moreover, $t\ne 0$ is a root of $x^2 + \zeta x + 1$ if and only if $t^{-1}$ is also a root and $t + t^{-1} = \zeta $ . Since $\zeta \in \mathbb {F}_q^\times $ , it follows that $t^q+t^{-q}=t+t^{-1}$ , and so either $t\in \mathbb {F}_q^\times $ or $t \in \mathbb {F}_{q^2}\backslash \mathbb {F}_q$ and $t^{q+1}=1$ . Such t is a noncube if and only if $t = \eta ^{3j\pm 1}$ for some $j \in \mathbb {Z}$ , where $\eta = \xi ^{q+\epsilon }$ . However, if $t = \eta ^{3j-1}$ , then $t^{-1}=\eta ^{-3j+1}=\eta ^{3j'+1}$ for some $j'=-j\in \mathbb {Z}$ . Thus, the irreducibility criteria in Theorem 3.2(c) is equivalent to $\zeta = \eta ^{3j+1} + \eta ^{-3j-1}$ for some $j \in \mathbb {Z}$ .

Note that if $j - k = \tfrac 13(q-\epsilon )$ , then $\eta ^{3j+1} + \eta ^{-3j-1} = \eta ^{3k+1} + \eta ^{-3k-1}$ ; thus, for $\zeta \in \mathbb {F}_q^\times $ , the trinomial D is irreducible if and only if $\zeta \in \{\eta ^{3j+1} + \eta ^{-3j-1}\mid 0 \le j < \tfrac 13(q-\epsilon )\}$ ; there are precisely $\tfrac 13(q-\epsilon )$ such irreducible polynomials.

(b) From Theorem 3.2(b), we see that D has precisely one root in $\mathbb {F}_q^\times $ if and only if ${\operatorname {\mathrm {tr}}(\zeta ^{-2})\ne \operatorname {\mathrm {tr}}(1)}$ . Since $\operatorname {\mathrm {tr}}(1)\equiv n-1 \bmod 2$ , it follows that $\operatorname {\mathrm {tr}}(\zeta ^{-2})\ne \operatorname {\mathrm {tr}}(1)$ if and only if the quadratic $x^2+\zeta x+1$ has two roots $t, t^{-1} \in \mathbb {F}_{q^2}\backslash \mathbb {F}_q$ if $q \equiv 1 \bmod 3$ , or two roots $t, t^{-1} \in \mathbb {F}_q^\times $ if $q \equiv 2\bmod 3$ ; in both cases, $t + t^{-1} = \zeta $ . As seen above, such roots t satisfy $t^{q+\epsilon }=1$ . That is, D has precisely one root in $\mathbb {F}_q$ if and only if $\zeta = \nu ^k + \nu ^{-k}$ , where $\nu = \xi ^{q-\epsilon }$ , for some $0 < k < q + \epsilon $ . Moreover, if $i + j = q + \epsilon $ , then $\nu ^i + \nu ^{-i} = \nu ^{j} + \nu ^{-j}$ . From this, we can conclude that $x^2+\zeta x+1$ is irreducible over $\mathbb {F}_q$ if and only if $\zeta \in \{\nu ^k + \nu ^{-k} \mid 0 < k \le \lfloor {(q+\epsilon )}/{2}\rfloor \}$ .

(c) The quadratic $x^2+\zeta (\zeta +1)^{-1} x + \zeta (\zeta + 1)^{-1}$ is reducible if and only if $\operatorname {\mathrm {tr}}(1+\zeta ^{-1})=0$ . Since $\operatorname {\mathrm {tr}}(\zeta ^{-2})=\operatorname {\mathrm {tr}}(1)$ by Theorem 3.2(c) and $\operatorname {\mathrm {tr}}(\zeta ^{-1})=\operatorname {\mathrm {tr}}(\zeta ^{-2})$ , the claim follows.

(d) By assumption, we have $r(r + 1)^2 = \zeta $ . Since

$$ \begin{align*}\operatorname{\mathrm{tr}}({r^{-1}(r + 1)^{-2}}) + \operatorname{\mathrm{tr}}({r}^{-1}) = \operatorname{\mathrm{tr}}({(r+1)^{-1}}) + \operatorname{\mathrm{tr}}({(r+1)^{-2}}) = 0,\end{align*} $$

it follows that $\operatorname {\mathrm {tr}}(\zeta ^{-1})=\operatorname {\mathrm {tr}}(r^{-1})$ , namely, $x^2 + x + {r}^{-1}$ is reducible over $\mathbb {F}_q$ if and only if $x^2 + x + \zeta ^{-1}$ is reducible over $\mathbb {F}_q$ , which proves the claim.

Footnotes

This work forms part of the author’s PhD thesis at Warwick University and Monash University; the author was supported by Monash–Warwick Alliance Joint PhD Scholarships (Warwick).

References

Ahmadi, O., ‘On the distribution of irreducible trinomials over ${F}_3$ ’, Finite Fields Appl. 13(3) (2007), 659664.10.1016/j.ffa.2005.10.005CrossRefGoogle Scholar
Berlekamp, E. R., ‘Factoring polynomials over finite fields’. Bell System Tech. J. 46 (1967), 18531859.10.1002/j.1538-7305.1967.tb03174.xCrossRefGoogle Scholar
Berlekamp, E. R., Algebraic Coding Theory (McGraw-Hill, New York–Toronto–London, 1968).Google Scholar
Chang, B., ‘The conjugate classes of Chevalley groups of type $\left({G}_2\right)$ ’, J. Algebra 9 (1968), 190211.10.1016/0021-8693(68)90020-3CrossRefGoogle Scholar
Dickson, L. E., ‘Criteria for the irreducibility of functions in a finite field’, Bull. Amer. Math. Soc. 13(1) (1906), 18.10.1090/S0002-9904-1906-01403-3CrossRefGoogle Scholar
Pan, E. X., Some Primitive Actions of ${G}_2(q)$ , PhD Thesis (Monash University–Warwick University, in preparation).Google Scholar
Shinoda, K., ‘The conjugacy classes of Chevalley groups of type $\left({F}_4\right)$ over finite fields of characteristic $2$ ’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 133159.Google Scholar
von zur Gathen, J., ‘Irreducible trinomials over finite fields’, Math. Comp. 72(244) (2003), 19872000.10.1090/S0025-5718-03-01515-1CrossRefGoogle Scholar
Williams, K. S., ‘Note on cubics over $GF(2^n)$ and $GF(3^n)$ ’, J. Number Theory 7(4) (1975), 361365.10.1016/0022-314X(75)90038-4CrossRefGoogle Scholar