Hostname: page-component-5b777bbd6c-gcwzt Total loading time: 0 Render date: 2025-06-20T07:54:07.165Z Has data issue: false hasContentIssue false

The Waring problem for upper triangular matrix algebras

Published online by Cambridge University Press:  17 April 2024

Qian Chen
Affiliation:
School of Mathematics and Statistics, Xiamen University of Technology, Xiamen 361024, China e-mail: qianchen0505@163.com
Yu Wang*
Affiliation:
Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Abstract

Our goal of the paper is to investigate the Waring problem for upper triangular matrix algebras, which gives a complete solution of a conjecture proposed by Panja and Prasad in 2023.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Brešar, M., Introduction to noncommutative algebra, Springer, New York, 2014.CrossRefGoogle Scholar
Brešar, M., Commutators and images of noncommutative polynomials . Adv. Math. 374(2020), 107346, 21p.CrossRefGoogle Scholar
Brešar, M. and Šemrl, P., The Waring problem for matrix algebras . Israel J. Math. 253(2023), 381405.CrossRefGoogle Scholar
Brešar, M. and Šemrl, P., The Waring problem for matrix algebras, II . Bull. Lond. Math. Soc. 55(2023), no. 4, 18801889.CrossRefGoogle Scholar
Chen, Q., A note on the image of polynomials on upper triangular matrix algebras, Comm. Algebra. 52(2024), no. 7, 31543167.Google Scholar
Chen, Q., Luo, Y. Y., and Wang, Y., The image of polynomials on $3\times 3$ upper triangular matrix algebras . Linear Algebra Appl. 648(2022), 254269.CrossRefGoogle Scholar
Drensky, V., Free algebras and PI-algebras: Graduate course in algebras, Springer, Hong Kong, 1996, 1197.Google Scholar
Fagundes, P. S. and Koshlukov, P., Images of multilinear graded polynomials on upper triangular matrix algebras . Canad. J. Math. 75(2023), no. 5, 15401565.CrossRefGoogle Scholar
Fontanari, C., On Waring’s problem for many forms and Grassmann defective varieties . J. Pure Appl. Algebra 174(2002), 243247.CrossRefGoogle Scholar
Gargate, I. G. and de Mello, T. C., Images of multilinear polynomials on $n\times n$ upper triangular matrices over infinite field . Israel J. Math. 252(2022), 337354.CrossRefGoogle Scholar
Helmke, U., Waring’s problem for binary forms . J. Pure Appl. Algebra 80(1992), 2945.CrossRefGoogle Scholar
Jacobson, N., Basic algebra I. 2nd ed., W. H. Freeman and Company, New York, 1985.Google Scholar
Karabulut, Y. D., Waring’s problem in finite rings . J. Pure Appl. Algebra 223(2019), 33183329.CrossRefGoogle Scholar
Larsen, M., Shalev, A., and Tiep, P. H., The Waring problem for finite simple groups . Ann. Math. 174(2011), 18851950.CrossRefGoogle Scholar
Luo, Y. Y. and Wang, Y., On Fagundes–Mello conjecture . J. Algebra 592(2022), 118152.CrossRefGoogle Scholar
Panja, S. and Prasad, S., The image of polynomials and Waring type problems on upper triangular matrix algebras . J. Algebra 631(2023), 148193.CrossRefGoogle Scholar
de Seguins Pazzis, C., A note on sums of three square-zero matrices . Linear Multilinear Algebra 65(2017), 787805.CrossRefGoogle Scholar
Shalev, A., Word maps, conjugacy classes, and a noncommutative Waring type theorem . Ann. Math. 170(2009), 13831416.CrossRefGoogle Scholar
Wang, Y., Zhou, J., and Luo, Y. Y., The image of polynomials on $2\times 2$ upper triangular matrix algebras . Linear Algebra Appl. 610(2021), 560573.CrossRefGoogle Scholar