Hostname: page-component-5b777bbd6c-pf7kn Total loading time: 0 Render date: 2025-06-24T14:38:09.189Z Has data issue: false hasContentIssue false

Multimodal Neuroprognostication of Poor Neurological Outcomes after Cardiac Arrest: A Systematic Review

Published online by Cambridge University Press:  23 May 2025

Alexandra Barriault*
Affiliation:
Department of Cardiology and Critical Care Medicine, Laval University, IUCPQ-Heart and Lung Institute, Quebec City, Canada
Caralyn Bencsik
Affiliation:
Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
Andrea Soo
Affiliation:
Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
Andreas Kramer
Affiliation:
Department of Critical Care Medicine & Clinical Neurosciences, Hotchkiss Brain Institute, Calgary, Canada Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
Julie Kromm
Affiliation:
Department of Critical Care Medicine & Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
*
Corresponding author: Alexandra Barriault; Email: alexandra.barriault.1@ulaval.ca

Abstract:

Background:

Brain injury related to hypoxic-ischemic insults post-cardiac arrest is a highly morbid and often fatal condition for which neuroprognostication remains challenging. There has been a significant increase in studies assessing the accuracy of multimodal approaches in predicting poor neurological outcomes post-cardiac arrest, and contemporary guidelines recommend this approach. We conducted a systematic review to assess multimodal versus unimodal approaches in neuroprognostication for predicting a poor neurological outcome for adult post-cardiac arrest patients at hospital discharge or beyond.

Methods:

PRISMA methodological standards were followed. MEDLINE, EMBASE and CINAHL were searched from inception until January 18, 2024, with no restrictions. Abstract and full-text review was completed in duplicate. Original studies assessing the prognostic accuracy (specificity and false positive rate [FPR]) of multimodal compared with unimodal approaches were included. The risk of bias was assessed using the QUIPS tool. Data were extracted in duplicate.

Results:

Of 791 abstracts, 12 studies were included. The FPR in predicting poor neurological outcomes ranged from 0% to 5% using a multimodal approach compared to 0% to 31% with a unimodal test. The risk of bias was moderate to high for most components.

Conclusions:

A multimodal approach may improve the FPR in predicting poor neurological outcomes of post-cardiac arrest patients.

Résumé :

RÉSUMÉ :

Le pronostic neurologique multimodal d’une évolution défavorable des patients après un arrêt cardiaque : une revue systématique.

Contexte :

Les lésions cérébrales liées à l’hypoxie et à l’ischémie après un arrêt cardiaque constituent des dommages associés à une grande morbidité et souvent mortels pour lesquels un pronostic de type neurologique reste difficile à établir. À cet égard, il y a eu une augmentation significative des études évaluant, d’une part, la précision des approches multimodales dans la prédiction de l’évolution neurologique des patients après un arrêt cardiaque et, d’autre part, les lignes directrices contemporaines recommandant cette approche. Nous avons ainsi effectué une revue systématique pour évaluer les approches multimodales par rapport aux approches unimodales dans le cas de pronostics neurologiques permettant de prédire une évolution défavorable chez des patients adultes victimes d’un arrêt cardiaque au moment de leur congé de l’hôpital ou par la suite.

Méthodes :

Les normes méthodologiques PRISMA ont été suivies. Des recherches ont été effectuées dans Medline, Embase et CINAHL depuis les débuts de l’étude jusqu’au 18 janvier 2024, et ce, sans aucune restriction. Les résumés et les textes intégraux ont été examinés en double. Des études originales évaluant la précision pronostique (spécificité et taux de faux positifs) des approches multimodales par rapport aux approches unimodales ont été incluses. Le risque de biais a été évalué à l’aide de l’outil QUIPS. De plus, les données ont été extraites en double.

Résultats :

Sur 791 résumés, 12 études ont été incluses. Le taux de faux positifs dans la prédiction d’une évolution neurologique défavorable variait de 0 à 5 % en utilisant une approche multimodale contre 0 à 31 % au moyen d’une approche unimodale. Précisons que le risque de biais était modéré à élevé pour la plupart des composants.

Conclusions :

Une approche multimodale peut améliorer le taux de faux positifs dans la prédiction d’une évolution neurologique défavorable chez les patients victimes d’un arrêt cardiaque.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Yan, S, Gan, Y, Jiang, N et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Critical Care (London, England). 2020;24:61–.Google Scholar
Sandroni, C, Cronberg, T, Sekhon, M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intens Care Med. 2021;47:13931414.Google Scholar
Rossetti, AO, Rabinstein, AA, Oddo, M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15:597609.Google Scholar
Elmer, J, Torres, C, Aufderheide, TP et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation. 2016;102:127135.Google Scholar
Geocadin, RG, Peberdy, MA, Lazar, RM. Poor survival after cardiac arrest resuscitation. Crit Care Med. 2012;40:979980.Google Scholar
Dragancea I, WM, Al-Subaie, N, Cranshaw, J, et al. TTM trial investigators: protocol driven neurological prognostication and withdrawal of life-sustaining therapy after cardiac arrest and targeted temperature management. Resuscitation. 2017;117:5057.Google Scholar
Geocadin, RG, Callaway, CW, Fink, EL et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019;140:e51742.Google Scholar
Fordyce, CB, Kramer, AH, Ainsworth, C, et al. Neuroprognostication in the post cardiac arrest patient: a Canadian Cardiovascular Society position statement. Can J Cardiol. 2023;39:366380.Google Scholar
Nolan, JP, Bttiger B.W., SC, Cariou, A, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47:369421.Google Scholar
Panchal, AR, Bartos, JA, Cabañas, Jé G et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142:S366468.Google Scholar
Rajajee, V, Muehlschlegel, S, Wartenberg, KE et al. Guidelines for neuroprognostication in comatose adult survivors of cardiac arrest. Neurocrit Care. 2023;38:533563.Google Scholar
Page, MJ, Moher, D, Bossuyt, PM et al. PRISMA 2020 Explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ (Online). 2021;372:n160n160.Google Scholar
Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia. 2023. Available at www.covidence.org.Google Scholar
Hirsch, LJ, Fong, MWK, Leitinger, M et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol. 2021;38:129.Google Scholar
Glimmerveen, AB, Ruijter, BJ, Keijzer, HM, Tjepkema-Cloostermans, MC, van Putten, MJAM, Hofmeijer, J. Association between somatosensory evoked potentials and EEG in comatose patients after cardiac arrest. Clin Neurophysiol. 2019;130:20262031.Google Scholar
Hofmeijer, J, Bosch, BT, Beishuizen, FH, Tjepkema- Cloostermans, A, van Putten, MJ. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85:137143.Google Scholar
Lee, BK, Jeung, KW, Lee, HY, Jung, YH, Lee, DH. Combining brain computed tomography and serum neuron specific enolase improves the prognostic performance compared to either alone in comatose cardiac arrest survivors treated with therapeutic hypothermia. Resuscitation. 2013;84:13871392.Google Scholar
Kim, JH, You, KM, Lee, JS et al. Multimodal approach for neurologic prognostication of out-of-hospital cardiac arrest patients undergoing targeted temperature management. Resuscitation [Internet]. 2019;134:3340.Google Scholar
Peluso, L, Attanasio, BT, Annoni, L et al. Multimodal approach to predict neurological outcome after cardiac arrest: a single-center experience. Brain Sci [Internet]. 2021;11:888.Google Scholar
Bongiovanni, F, Romagnosi, F, Barbella, G et al. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. Intens Care Med. 2020;46:963972.Google Scholar
Moseby-Knappe, M, Westhall, E, Backman, S et al. Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest. Intensive Care Med [Internet]. 2020;46:18521862.Google Scholar
Zhou, SE, Maciel, C, Ormseth, CH, Beekman, R, Gilmore, EJ, Greer, DM. Distinct predictive values of current neuroprognostic guidelines in post-cardiac arrest patients. Resuscitation [Internet]. 2019;139:343350.Google Scholar
Nolan, JP, Cariou, SJ, Cronberg, A et al. European resuscitation council and european society of intensive care medicine 2015 guidelines for post-resuscitation care. Intensive Care Med. 2015;41:20392056.Google Scholar
Kim, JH, Park, I, Chung, SP et al. Optimal combination of clinical examinations for neurologic prognostication of out-of-hospital cardiac arrest patients. Resuscitation [Internet]. 2020;155:9199.Google Scholar
Roger, C, Palmier, L, Louart, B et al. Neuron specific enolase and Glasgow motor score remain useful tools for assessing neurological prognosis after out-of-hospital cardiac arrest treated with therapeutic hypothermia. Anaesth Crit Care Pain Med. 2015;34:231237.Google Scholar
Bisschops, LL, van Alfen, N, Bons, S, van der Hoeven, JG, Hoedemaekers, C. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation. 2011;82:696701.Google Scholar
Pouplet, C, Martin, S, Colin, G et al. The accuracy of various neuroprognostication algorithms and the added value of neurofilament light chain dosage for patients resuscitated from shockable cardiac arrest: An ancillary analysis of the ISOCRATE study. Resuscitation [Internet]. 2022;171:17.Google Scholar
Youn, CS, Park, KN, Kim, SH et al. External validation of the 2020 ERC/ESICM prognostication strategy algorithm after cardiac arrest. Critical care (London, England). 2022;26:95–.Google Scholar
Group, BRCTIS. A randomized clinical study of cardiopulmonary-cerebral resuscitation: design, methods, and patient characteristics. Am J Emerg Med. 1986;4:7286.Google Scholar
Grooten, WJA, Tseli, E, Äng Börn, O, et al. Elaborating on the assessment of the risk of bias in prognostic studies in pain rehabilitation using QUIPS-aspects of interrater agreement. Diagn Progn Res. 2019;3:5–.Google Scholar
Hayden, JA, van der Windt, DA, Cartwright, JL, Côté, P, Bombardier, C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280286.Google Scholar
HAYDEN, JA, Côté, P, Bombardier, C. Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med. 2006;144:427437.Google Scholar
Corporation, M. Microsoft Excel [Internet]. 2020: Available at: https://office.microsoft.com/excel.Google Scholar
Begg, CB, Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.Google Scholar
Egger, M, Smith, GD, Schneider, M, Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629634.Google Scholar
Oddo, M, Sandroni, C, Citerio, G et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study. Intensive Care Med [Internet]. 2018;44:21022111.Google Scholar
Scarpino, M, Lolli, F, Lanzo, G et al. Does a combination of > = 2 abnormal tests vs. the ERC-ESICM stepwise algorithm improve prediction of poor neurological outcome after cardiac arrest? A post-hoc analysis of the proNeCA multicentre study. Resuscitation [Internet]. 2021;160:158167.+=+2+abnormal+tests+vs.+the+ERC-ESICM+stepwise+algorithm+improve+prediction+of+poor+neurological+outcome+after+cardiac+arrest?+A+post-hoc+analysis+of+the+proNeCA+multicentre+study.+Resuscitation+[Internet].+2021;160:158–167.>Google Scholar
Ben-Hamouda, N, Ltaief, Z, Kirsch, M et al. Neuroprognostication under ECMO after cardiac arrest: are classical tools still performant? Neurocrit Care. 2022;31:293301.Google Scholar
Son, SH, Lee, IH, Park, JS et al. Does combining biomarkers and brain images provide improved prognostic predictive performance for out-of-hospital cardiac arrest survivors before target temperature management? Journal of Clinical Medicine. 2020;9:744.Google Scholar
Lin, L, Chu, H. Quantifying publication bias in meta-analysis. Biometrics. 2018;74:785794.Google Scholar
Schmid, CH, Stijnen, T, White, IR, eds. Handbook of Meta-Analysis. First edition. CRC Press, Taylor and Francis. 2021. https://www.taylorfrancis.com/books/9781315119403.Google Scholar
Wang, CH, Chang, WT, Su, K-I et al. Neuroprognostic accuracy of blood biomarkers for post-cardiac arrest patients: a systematic review and meta-analysis. Resuscitation [Internet]. 2020;148:108117.Google Scholar
Lee, YC, Phan, TG, Jolley, DJ, Castley, HC, Ingram, DA, Reutens, DC. Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma: a meta-analysis. Neurology. 2010;74:572580.Google Scholar
Sandroni, C, D’Arrigo, S, Cacciola, S. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intens Care Med. 2020;46:18031851.Google Scholar
Golan, E, Barrett, K, Alali, AS et al. Predicting neurologic outcome after targeted temperature management for cardiac arrest: systematic review and meta-analysis. Crit Care Med. 2014;42:19191930.Google Scholar
Girotra, S, van Diepen, S, Nallamothu, BK et al. Regional variation in out-of-hospital cardiac arrest survival in the United States. Circulation. 2016;133:21592168.Google Scholar
Berdowski, J, Berg, RA, Tijssen, JGP, Koster, RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 Prospective studies. Resuscitation. 2010;81:14791487.Google Scholar
Foundation, H.a.S. Addressing cardiac arrest in Canada. 2020[cited 2020 October 20].Google Scholar
Bencsik, CM, Kramer, AH, Couillard, P, MacKay, M, Kromm, JA. Postarrest neuroprognostication: practices and opinions of Canadian physicians. Can J Neurol Sci. 2024;51:404415.Google Scholar
Steinberg, A, Callaway, CW, Arnold, RM et al. Prognostication after cardiac arrest: results of an international, multi-professional survey. Resuscitation. 2019;138:190197.Google Scholar
Etkind, SN, Koffman, J. Approaches to managing uncertainty in people with life-limiting conditions: role of communication and palliative care. Postgrad Med J. 2016;92:412417.Google Scholar
Sandroni, C, Cavallaro, CA, Cronberg, F. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation [Internet]. 2014;85:17791789.Google Scholar
Higgins, JPT, Thompson, SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:15391558.Google Scholar
Sandroni, C, Cavallaro, F, Callaway, CW et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 1: patients not treated with therapeutic hypothermia. Resuscitation. 2013;84:13101323.Google Scholar
Sandroni, C, Cavallaro, F, Callaway, CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation. 2013;84:13241338.Google Scholar
Supplementary material: File

Barriault et al. supplementary material

Barriault et al. supplementary material
Download Barriault et al. supplementary material(File)
File 453.9 KB