Hostname: page-component-5b777bbd6c-sbgtn Total loading time: 0 Render date: 2025-06-22T19:22:57.762Z Has data issue: false hasContentIssue false

Speech, Kinematics and Gait Analysis of Degenerative Cerebellar Ataxia Syndromes

Published online by Cambridge University Press:  24 April 2025

Jacky Ganguly*
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Dina Babiker
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Yokhesh Tamilselvam
Affiliation:
Canadian Surgical Technologies and Advanced Robotics (CSTAR), Department of Electrical and Computer Engineering, Western University, London, ON, Canada
Sima Soltani
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Yekta Mahdi
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Mellany Tuesta Bernaola
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Dinkar Kulshreshtha
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
Scott Adams
Affiliation:
School of Communication Sciences and Disorders, London, ON, Canada
Mandar Jog
Affiliation:
Movement Disorder Centre, London Health Sciences Centre, Western University, London, ON, Canada
*
Corresponding author: Jacky Ganguly; Email: jackyganguly03@gmail.com

Abstract

Introduction:

Cerebellar ataxias are a heterogeneous group of disorders clinically manifest as impaired coordination during a voluntary motor task resulting from cortico-cerebellar brain network dysfunction, resulting in multiple motor systems including speech, upper limb dexterous movement and gait. Objective assessment of these dysfunctional motor domains provides vital clues in assessing the underlying pathophysiology.

Methods:

In this study, speech, upper limb kinematics and gait were studied using acoustic software (Praat), upper limb robot (KINARM) and gait carpet (Zeno Walkway with PKMAS). Clinical assessment was conducted using the Scale for the Assessment and Rating of Ataxia (SARA).

Results:

In speech analysis, ataxia patients had slower and variable ‘tuh’ syllable repetition performance than healthy controls. In KINARM reaching tasks, ataxia patients displayed less accuracy and efficacy as measured by endpoint error (EE) and mean perpendicular error, along with slower mean and peak velocity of arm movements, prolonged reaction time and increased inter-trial variability. Moreover, there were more EEs while applying load during arm movement. Gait analysis revealed reduced cadence, reduced stride velocity, reduced step length, longer time in the double support phase and increased variability of step length, stride velocity, double support percentage and gait cycle time.

Conclusion:

The study highlights the critical role played by the cerebellum during movement execution and has paved the way for more comprehensive future studies on degenerative cerebellar ataxia, incorporating kinematic measurements in multiple motor domains.

Résumé

RÉSUMÉIntroduction :

L’ataxie cérébelleuse forme un groupe hétérogène de troubles qui se manifestent, sur le plan clinique, par des problèmes de coordination durant l’exécution de tâches motrices volontaires; ceux-ci résultent d’un dysfonctionnement du réseau cortico-cérébelleux et ils touchent différents domaines d’activité motrice, notamment l’élocution, la dextérité des mouvements des membres supérieurs et la démarche. Une évaluation objective de ces différents types de troubles moteurs fournit de précieux indices sur la physiopathologie sous-jacente.

Méthode :

Dans l’étude ici présentée, l’élocution, la cinématique des membres supérieurs et la démarche ont été évaluées à l’aide d’un logiciel acoustique (Praat), d’un dispositif robotique de bras (KINARM) et d’un tapis de marche (Zeno Walkway muni du logiciel d’analyse de mouvements ProtoKinetics). L’évaluation clinique, quant à elle, repose sur l’échelle Scale for the Assessment and Rating of Ataxia (SARA).

Résultats :

En ce qui concerne l’analyse de l’élocution, la répétition de la syllabe [tuh] [en anglais] était plus lente et plus variable chez les patients atteints d’ataxie que chez les témoins. Quant aux tâches de contact mesurées par le robot KINARM, les sujets atteints d’ataxie faisaient preuve d’une précision et d’une efficacité moindres, marquées par les erreurs d’atteinte de la cible et les erreurs perpendiculaires moyennes ainsi que par le ralentissement de la rapidité moyenne et maximale du mouvement des bras, la prolongation du temps de réaction et l’augmentation de la variabilité entre les essais. De plus, le nombre d’erreurs d’atteinte de la cible augmentait lorsqu’une charge était appliquée durant le mouvement des bras. Enfin, l’analyse de la démarche a révélé une réduction de la cadence, une réduction de la rapidité de foulée, une diminution de la longueur de pas, un prolongement de la phase de double appui ainsi qu’une augmentation de la variabilité de la longueur de pas, de la rapidité de foulée, du pourcentage de double appui et de la durée du cycle de marche.

Conclusion :

L’étude fait ressortir l’importance cruciale du rôle du cervelet dans l’exécution des mouvements, et ouvre la voie à de futures études exhaustives sur l’ataxie cérébelleuse dégénérative, intégrant des mesures cinématiques dans plusieurs domaines de la motricité.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Manto, M, Bower, JM, Conforto, AB, et al. Consensus paper: roles of the cerebellum in motor control—The diversity of ideas on cerebellar involvement in movement. The Cerebellum. 2012;11:457487. DOI: 10.1007/s12311-011-0331-9.Google Scholar
Caligiore, D, Pezzulo, G, Baldassarre, G, et al. Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. The Cerebellum. 2017;16:203229. DOI: 10.1007/s12311-016-0763-3.Google Scholar
Koziol, LF, Budding, D, Andreasen, N, et al. Consensus paper: the cerebellum’s role in movement and cognition. The Cerebellum. 2014;13:151177. DOI: 10.1007/s12311-013-0511-x.Google Scholar
Kent, RD, Kim, Y, Chen, L-M. Oral and laryngeal diadochokinesis across the life span: a scoping review of methods, reference data, and clinical applications. J Speech Lang Hear Res. 2022;65:574623. DOI: 10.1044/2021_JSLHR-21-00396.Google Scholar
Spencer, KA, Amaral, J, Lansford, K. Investigating perceptual subgroups in speakers with ataxic dysarthria: an auditory free classification approach. Am J Speech Lang Pathol. 2023;32:19011911. DOI: 10.1044/2022_AJSLP-22-00159.Google Scholar
Cruz, GC da, Zonta, MB, Munhoz, RP, et al. Functionality and disease severity in spinocerebellar ataxias. Arq Neuropsiquiatr. 2022;80:137144. DOI: 10.1590/0004-282x-anp-2020-0580.Google Scholar
Lawrenson, C, Bares, M, Kamondi, A, et al. The mystery of the cerebellum: clues from experimental and clinical observations. Cerebellum Ataxias. 2018;5:8. DOI: 10.1186/s40673-018-0087-9.Google Scholar
Manto, M. The underpinnings of cerebellar ataxias. Clin Neurophysiol Pract. 2022;7:372387. DOI: 10.1016/j.cnp.2022.11.002.Google Scholar
Bodranghien, F, Bastian, A, Casali, C, et al. Consensus paper: revisiting the symptoms and signs of Cerebellar syndrome. The Cerebellum. 2016;15:369391. DOI: 10.1007/s12311-015-0687-3.Google Scholar
Weyer, A, Abele, M, Schmitz-Hübsch, T, et al. Reliability and validity of the scale for the assessment and rating of ataxia: a study in 64 ataxia patients. Movement Disord. 2007;22:16331637. DOI: 10.1002/mds.21544.Google Scholar
Kent, RD, Kent, JF, Duffy, JR, Thomas, JE, Weismer, G, Stuntebeck, S. Ataxic dysarthria. J Speech Lang Hear Res. 2000;43:12751289. DOI: 10.1044/jslhr.4305.1275.Google Scholar
Spencer, KA, France, AA. Perceptual ratings of subgroups of ataxic dysarthria. Int J Lang Commun Disord. 2016;51:430441. DOI: 10.1111/1460-6984.12219.Google Scholar
Darley, FL, Aronson, AE, Brown, JR. Clusters of deviant speech dimensions in the dysarthrias. J Speech Hear Res. 1969;12:462496. DOI: 10.1044/jshr.1203.462.Google Scholar
Manto, M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;6:10. DOI: 10.1186/1743-0003-6-10.Google Scholar
Manto, M, Serrao, M, Filippo Castiglia, S, et al. Neurophysiology of cerebellar ataxias and gait disorders. Clin Neurophysiol Pract. 2023;8:143160. DOI: 10.1016/j.cnp.2023.07.002.Google Scholar
Timmann, D, Watts, S, Hore, J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82:103114. DOI: 10.1152/jn.1999.82.1.103.Google Scholar
Topka, H, Konczak, J, Dichgans, J. Coordination of multi-joint arm movements in cerebellar ataxia. Experimental Brain Research. 1998;119:483492. DOI: 10.1007/s002210050364.Google Scholar
Manto, M, Godaux, E, Jacquy, J. Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 1994;35:4552. DOI: 10.1002/ana.410350108.Google Scholar
Cabaraux, P, Gandini, J, Kakei, S, Manto, M, Mitoma, H, Tanaka, H. Dysmetria and errors in predictions: the role of internal forward model. Int J Mol Sci. 2020;21:6900. DOI: 10.3390/ijms21186900.Google Scholar
Serrao, M, Pierelli, F, Ranavolo, A, et al. Gait pattern in inherited cerebellar ataxias. The Cerebellum. 2012;11:194211. DOI: 10.1007/s12311-011-0296-8.Google Scholar
Buckley, E, Mazzà, C, McNeill, A. A systematic review of the gait characteristics associated with cerebellar ataxia. Gait Posture. 2018;60:154163. DOI: 10.1016/j.gaitpost.2017.11.024.Google Scholar
Palliyath, S, Hallett, M, Thomas, SL, Lebiedowska, MK. Gait in patients with cerebellar ataxia. Movement Disord. 1998;13:958964. DOI: 10.1002/mds.870130616.Google Scholar
McAndrew Young, PM, Dingwell, JB. Voluntarily changing step length or step width affects dynamic stability of human walking. Gait Posture. 2012;35:472477. DOI: 10.1016/j.gaitpost.2011.11.010.Google Scholar
Ilg, W, Golla, H, Thier, P, Giese, MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130:786798. DOI: 10.1093/brain/awl376.Google Scholar
Stolze, H, Klebe, S, Petersen, G, Raethjen, J, Wenzelburger, R, Witt, K. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry. 2002;73:310312 www.jnnp.comGoogle Scholar
Seemann, J, Daghsen, L, Cazier, M, et al. Digital gait measures capture 1-year progression in early-stage spinocerebellar ataxia type 2. Movement Disord. 2024;39:788797. DOI: 10.1002/mds.29757.Google Scholar
Hausdorff, JM. Stride variability: beyond length and frequency. Gait Posture. 2004;20:304. DOI: 10.1016/j.gaitpost.2003.08.002.Google Scholar
Benussi, A, Cantoni, V, Manes, M, et al. Motor and cognitive outcomes of cerebello-spinal stimulation in neurodegenerative ataxia. Brain. 2021;144:23102321. DOI: 10.1093/brain/awab157.Google Scholar
Benussi, A, Dell’Era, V, Cantoni, V, et al. Cerebello-spinal tDCS in ataxia: a randomized, double-blind, sham-controlled, crossover trial. Neurology. 2018;91(12):e1090e1101. DOI: 10.1212/WNL.0000000000006210.Google Scholar
Ilg, W, Seemann, J, Giese, M, et al. Real-life gait assessment in degenerative cerebellar ataxia: toward ecologically valid biomarkers. Neurology. 2020;95(9):e1199e1210. DOI: 10.1212/WNL.0000000000010176.Google Scholar
Hermle, D, Schubert, R, Barallon, P, et al. Multifeature quantitative motor assessment of upper limb ataxia including drawing and reaching. Ann Clin Transl Neurol. 2024;11:1097–109. DOI: 10.1002/acn3.52024.Google Scholar
Kishimoto, Y, Hashizume, A, Imai, Y, et al. Quantitative evaluation of upper limb ataxia in spinocerebellar ataxias. Ann Clin Transl Neurol. 2022;9:529539. DOI: 10.1002/acn3.51528.Google Scholar