No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
In this paper, we consider the Cauchy problem
  $$\left\{ \begin{align}& {{u}_{t}}=\Delta ({{u}^{m}}),\,\,\,\,\,x\in {{\mathbb{R}}^{N}},t>0,N\ge 3, \\& u(x,0)={{u}_{0}}(x),\,\,\,\,\,x\in {{\mathbb{R}}^{N}}. \\ \end{align} \right.$$
 $$\left\{ \begin{align}& {{u}_{t}}=\Delta ({{u}^{m}}),\,\,\,\,\,x\in {{\mathbb{R}}^{N}},t>0,N\ge 3, \\& u(x,0)={{u}_{0}}(x),\,\,\,\,\,x\in {{\mathbb{R}}^{N}}. \\ \end{align} \right.$$
We will prove that
(i) for   ${{m}_{c}}\,<\,m,\,{{m}_{0}}\,<\,1,\,\left| u(x,\,t,m)-u(x,\,t,{{m}_{0}}) \right|\,\to \,0$  as
 ${{m}_{c}}\,<\,m,\,{{m}_{0}}\,<\,1,\,\left| u(x,\,t,m)-u(x,\,t,{{m}_{0}}) \right|\,\to \,0$  as   $m\,\to \,{{m}_{0}}$  uniformly on every compact subset of
 $m\,\to \,{{m}_{0}}$  uniformly on every compact subset of   ${{\mathbb{R}}^{N}}\,\times \,{{\mathbb{R}}^{+}}$ , where
 ${{\mathbb{R}}^{N}}\,\times \,{{\mathbb{R}}^{+}}$ , where   ${{m}_{c}}\,=\,\frac{{{(N-2)}_{+}}}{N}$ ;
 ${{m}_{c}}\,=\,\frac{{{(N-2)}_{+}}}{N}$ ;
(ii) there is a   ${{C}^{*}}$  that explicitly depends on
 ${{C}^{*}}$  that explicitly depends on   $m$  such that
 $m$  such that
  $${{\left\| u(\cdot ,\cdot ,m)-u(\cdot ,\cdot ,1) \right\|}_{{{L}^{2}}({{\mathbb{R}}^{N}}\times {{\mathbb{R}}^{+}})}}\le {{C}^{*}}\left| m-1 \right|.$$
 $${{\left\| u(\cdot ,\cdot ,m)-u(\cdot ,\cdot ,1) \right\|}_{{{L}^{2}}({{\mathbb{R}}^{N}}\times {{\mathbb{R}}^{+}})}}\le {{C}^{*}}\left| m-1 \right|.$$