Hostname: page-component-7dd5485656-bt4hw Total loading time: 0 Render date: 2025-10-24T16:00:27.284Z Has data issue: false hasContentIssue false

Abnormal neural activation during negative emotion processing in anxiety disorders: a coordinate-based meta-analysis

Published online by Cambridge University Press:  06 May 2024

Rui Wang
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
Lu Lu
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Psychoradiology Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
Yingxue Gao
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
Hui Qiu
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
Haoran Xu
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Psychoradiology Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
Xiaoqi Huang
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
John A. Sweeney
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
Qiyong Gong*
Affiliation:
Department of Radiology, Huaxi MR Research Center (HMRRC), Institute of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, China Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
Jeffrey R. Strawn
Affiliation:
Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA Divisions of Psychiatry and Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
*
Corresponding author: Qiyong Gong; Email: qiyonggong@hmrrc.org.cn

Abstract

Background

Anxiety disorders are associated with aberrant neural responses to negative emotions. Yet, the diverse range of contrasts and stimuli used to investigate these responses has produced variable, complex, and sometimes conflicting results.

Methods

To characterize brain activation during negative emotion processing in anxiety disorders, we conducted a meta-analysis of studies contrasting activation to negative stimuli versus perceptually similar neutral stimuli and examined the differential effects of two types of visual stimuli—scenes and faces. The relevant functional magnetic resonance imaging (fMRI) studies that employed these contrasts were identified using PubMed, Web of Science, and EMBASE databases, and the meta-analysis was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Results

Across 20 studies, patients with anxiety disorders (n = 348) had increased activation in core cortical regions of default mode and frontal–parietal networks during negative emotion processing compared to healthy controls (n = 335). Further, differential and greater regional activation was found during the processing of negative scenes than faces and greater activation was associated with sex and age of patients across studies.

Conclusions

These results highlight the importance of self-reference- and cognitive regulation-related functional disturbances in the cortex rather than emotional response-related subcortical alteration during negative emotion processing and indicate a more robust effect from emotional scenes in anxiety disorders.

Information

Type
Original Research
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

R.W. and L.L. contributed equally.

Deceased.

References

Collaborators GBDMD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990−2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9(2):137150.CrossRefGoogle Scholar
McKay, D, Tolin, DF. Empirically supported psychological treatments and the Research Domain Criteria (RDoC). J Affect Disord. 2017;216:7888.10.1016/j.jad.2016.10.018CrossRefGoogle ScholarPubMed
Frick, A, Howner, K, Fischer, H, Kristiansson, M, Furmark, T. Altered fusiform connectivity during processing of fearful faces in social anxiety disorder. Transl Psychiatry. 2013;3(10):e312.CrossRefGoogle ScholarPubMed
Heitmann, CY, Feldker, K, Neumeister, P, et al. Brain activation to task-irrelevant disorder-related threat in social anxiety disorder: the impact of symptom severity. Neuroimage Clin. 2017;14:323333.10.1016/j.nicl.2017.01.020CrossRefGoogle ScholarPubMed
Heitmann, CY, Feldker, K, Neumeister, P, et al. Abnormal brain activation and connectivity to standardized disorder-related visual scenes in social anxiety disorder. Hum. Brain Mapp. 2016;37(4):15591572.10.1002/hbm.23120CrossRefGoogle ScholarPubMed
Padgaonkar, NT, Phuong Uy, J, DePasque, S, Galvan, A, Peris, TS. Neural correlates of emotional reactivity and regulation in youth with and without anxiety. Depress. Anxiety. 2021;38(8):804815.10.1002/da.23154CrossRefGoogle Scholar
Bruckl, TM, Spoormaker, VI, Samann, PG, et al. The biological classification of mental disorders (BeCOME) study: a protocol for an observational deep-phenotyping study for the identification of biological subtypes. BMC Psychiatry. 2020;20(1):213.CrossRefGoogle Scholar
Williams, LM, Goldstein-Piekarski, AN, Chowdhry, N, et al. Developing a clinical translational neuroscience taxonomy for anxiety and mood disorder: protocol for the baseline-follow up Research domain criteria Anxiety and Depression ("RAD") project. BMC Psychiatry. 2016;16:68.10.1186/s12888-016-0771-3CrossRefGoogle ScholarPubMed
Strawn, JR, Levine, A. Treatment response biomarkers in anxiety disorders: from neuroimaging to neuronally-derived extracellular vesicles and beyond. Biomark Neuropsychiatry. 2020;3:100024.10.1016/j.bionps.2020.100024CrossRefGoogle ScholarPubMed
Bruhl, AB, Delsignore, A, Komossa, K, Weidt, S. Neuroimaging in social anxiety disorder-a meta-analytic review resulting in a new neurofunctional model. Neurosci. Biobehav. Rev. 2014;47:260280.10.1016/j.neubiorev.2014.08.003CrossRefGoogle Scholar
Etkin, A, Wager, TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry. 2007;164(10):14761488.10.1176/appi.ajp.2007.07030504CrossRefGoogle ScholarPubMed
Gentili, C, Cristea, IA, Angstadt, M, et al. Beyond emotions: A meta-analysis of neural response within face processing system in social anxiety. Exp. Biol. Med. (Maywood). 2016;241(3):225237.10.1177/1535370215603514CrossRefGoogle ScholarPubMed
Kolesar, TA, Bilevicius, E, Wilson, AD, Kornelsen, J. Systematic review and meta-analyses of neural structural and functional differences in generalized anxiety disorder and healthy controls using magnetic resonance imaging. Neuroimage. Clin. 2019;24:102016.10.1016/j.nicl.2019.102016CrossRefGoogle ScholarPubMed
Weber-Goericke, F, Muehlhan, M. A quantitative meta-analysis of fMRI studies investigating emotional processing in excessive worriers: application of activation likelihood estimation analysis. J. Affect. Disord. 2019;243:348359.10.1016/j.jad.2018.09.049CrossRefGoogle ScholarPubMed
Yu, X, Ruan, Y, Zhang, Y, et al. Cognitive neural mechanism of social anxiety disorder: a meta-analysis based on fMRI Studies. Int. J. Environ. Res. Public Health. 2021;18(11):5556.10.3390/ijerph18115556CrossRefGoogle ScholarPubMed
Fusar-Poli, P, Placentino, A, Carletti, F, et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. 2009;34(6):418432.CrossRefGoogle ScholarPubMed
Zhang, Z, Huang, P, Li, S, et al. Neural mechanisms underlying the processing of emotional stimuli in individuals with depression: an ALE meta-analysis study. Psychiatry Res. 2022;313:114598.10.1016/j.psychres.2022.114598CrossRefGoogle ScholarPubMed
Goldin, PR, Manber, T, Hakimi, S, Canli, T, Gross, JJ. Neural bases of social anxiety disorder: emotional reactivity and cognitive regulation during social and physical threat. Arch. Gen. Psychiatry. 2009;66(2):170180.10.1001/archgenpsychiatry.2008.525CrossRefGoogle ScholarPubMed
Gaebler, M, Daniels, JK, Lamke, JP, Fydrich, T, Walter, H. Heart rate variability and its neural correlates during emotional face processing in social anxiety disorder. Biol. Psychol. 2013;94(2):319330.10.1016/j.biopsycho.2013.06.009CrossRefGoogle ScholarPubMed
Gaebler, M, Daniels, JK, Lamke, JP, Fydrich, T, Walter, H. Behavioural and neural correlates of self-focused emotion regulation in social anxiety disorder. J. Psychiatry Neurosci. 2014;39(4):249258.CrossRefGoogle ScholarPubMed
Evans, KC, Wright, CI, Wedig, MM, Gold, AL, Pollack, MH, Rauch, SL. A functional MRI study of amygdala responses to angry schematic faces in social anxiety disorder. Depress. Anxiety. 2008;25(6):496505.10.1002/da.20347CrossRefGoogle ScholarPubMed
Binelli, C, Muniz, A, Subira, S, et al. Facial emotion processing in patients with social anxiety disorder and Williams-Beuren syndrome: an fMRI study. J. Psychiatry Neurosci. 2016;41(3):182191.10.1503/jpn.140384CrossRefGoogle ScholarPubMed
Britton, JC, Taylor, SF, Sudheimer, KD, Liberzon, I. Facial expressions and complex IAPS pictures: common and differential networks. Neuroimage. 2006;31(2):906919.10.1016/j.neuroimage.2005.12.050CrossRefGoogle ScholarPubMed
Sabatinelli, D, Fortune, EE, Li, Q, et al. Emotional perception: meta-analyses of face and natural scene processing. Neuroimage. 2011;54(3):25242533.10.1016/j.neuroimage.2010.10.011CrossRefGoogle ScholarPubMed
Strawn, JR, Bitter, SM, Weber, WA, et al. Neurocircuitry of generalized anxiety disorder in adolescents: a pilot functional neuroimaging and functional connectivity study. Depress. Anxiety. 2012;29(11):939947.10.1002/da.21961CrossRefGoogle ScholarPubMed
Carlisi, CO, Hilbert, K, Guyer, AE, Ernst, M. Sleep-amount differentially affects fear-processing neural circuitry in pediatric anxiety: a preliminary fMRI investigation. Cogn. Affect. Behav. Neurosci. 2017;17(6):10981113.10.3758/s13415-017-0535-7CrossRefGoogle ScholarPubMed
Duval, ER, Javanbakht, A, Liberzon, I. Neural circuits in anxiety and stress disorders: a focused review. Ther. Clin. Risk Manag. 2015;11:115126.Google ScholarPubMed
Moher, D, Shamseer, L, Clarke, M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews. 2015;4:1.10.1186/2046-4053-4-1CrossRefGoogle ScholarPubMed
Radua, J, Mataix-Cols, D. Meta-analytic methods for neuroimaging data explained. Biology of Mood & Anxiety Disorders. 2012;2:6.10.1186/2045-5380-2-6CrossRefGoogle ScholarPubMed
Radua, J, Mataix-Cols, D, Phillips, ML, et al. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur. Psychiatry. 2012;27(8):605611.CrossRefGoogle ScholarPubMed
Radua, J, van den Heuvel, OA, Surguladze, S, Mataix-Cols, D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch. Gen. Psychiatry. 2010;67(7):701711.10.1001/archgenpsychiatry.2010.70CrossRefGoogle ScholarPubMed
Radua, J, Mataix-Cols, D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br. J. Psychiatry. 2009;195(5):393402.10.1192/bjp.bp.108.055046CrossRefGoogle ScholarPubMed
Albajes-Eizagirre, A, Solanes, A, Vieta, E, Radua, J. Voxel-based meta-analysis via permutation of subject images (PSI): theory and implementation for SDM. Neuroimage. 2019;186:174184.10.1016/j.neuroimage.2018.10.077CrossRefGoogle ScholarPubMed
Radua, J, Rubia, K, Canales-Rodriguez, EJ, Pomarol-Clotet, E, Fusar-Poli, P, Mataix-Cols, D. Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Front. Psychiatry. 2014;5:13.10.3389/fpsyt.2014.00013CrossRefGoogle ScholarPubMed
Wang, Y, Gao, Y, Tang, S, et al. Large-scale network dysfunction in the acute state compared to the remitted state of bipolar disorder: a meta-analysis of resting-state functional connectivity. EBioMedicine. 2020;54:102742.10.1016/j.ebiom.2020.102742CrossRefGoogle Scholar
Egger, M, Smith, GD, Phillips, AN. Meta-analysis: principles and procedures. BMJ. 1997;315(7121):15331537.10.1136/bmj.315.7121.1533CrossRefGoogle ScholarPubMed
Radua, J, Grau, M, van den Heuvel, OA, et al. Multimodal voxel-based meta-analysis of white matter abnormalities in obsessive-compulsive disorder. Neuropsychopharmacology. 2014;39(7):15471557.10.1038/npp.2014.5CrossRefGoogle ScholarPubMed
Price, RB, Eldreth, DA, Mohlman, J. Deficient prefrontal attentional control in late-life generalized anxiety disorder: an fMRI investigation. Transl Psychiatry. 2011;1(10):e46.10.1038/tp.2011.46CrossRefGoogle ScholarPubMed
Palm, ME, Elliott, R, McKie, S, Deakin, JF, Anderson, IM. Attenuated responses to emotional expressions in women with generalized anxiety disorder. Psychol. Med. 2011;41(5):10091018.CrossRefGoogle ScholarPubMed
Shah, SG, Klumpp, H, Angstadt, M, Nathan, PJ, Phan, KL. Amygdala and insula response to emotional images in patients with generalized social anxiety disorder. J. Psychiatry Neurosci. 2009;34(4):296302.10.1139/jpn.0939CrossRefGoogle ScholarPubMed
Monk, CS, Telzer, EH, Mogg, K, et al. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch. Gen. Psychiatry. 2008;65(5):568576.10.1001/archpsyc.65.5.568CrossRefGoogle ScholarPubMed
Amir, N, Klumpp, H, Elias, J, Bedwell, JS, Yanasak, N, Miller, LS. Increased activation of the anterior cingulate cortex during processing of disgust faces in individuals with social phobia. Biol. Psychiatry. 2005;57(9):975981.10.1016/j.biopsych.2005.01.044CrossRefGoogle ScholarPubMed
Bruhl, AB, Rufer, M, Delsignore, A, Kaffenberger, T, Jancke, L, Herwig, U. Neural correlates of altered general emotion processing in social anxiety disorder. Brain Res. 2011;1378:7283.10.1016/j.brainres.2010.12.084CrossRefGoogle ScholarPubMed
Labuschagne, I, Phan, KL, Wood, A, et al. Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int. J. Neuropsychopharmacol. 2012;15(7):883896.10.1017/S1461145711001489CrossRefGoogle ScholarPubMed
Nakao, T, Sanematsu, H, Yoshiura, T, et al. fMRI of patients with social anxiety disorder during a social situation task. Neurosci. Res. 2011; 69(1):6772.10.1016/j.neures.2010.09.008CrossRefGoogle ScholarPubMed
Schmidt, S, Mohr, A, Miltner, WH, Straube, T. Task-dependent neural correlates of the processing of verbal threat-related stimuli in social phobia. Biol. Psychol. 2010;84(2):304312.10.1016/j.biopsycho.2010.03.005CrossRefGoogle ScholarPubMed
Hiser, J, Schneider, B, Koenigs, M. Uncertainty potentiates neural and cardiac responses to visual stimuli in anxiety disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6(7):725734.Google ScholarPubMed
Li, J, Zhong, Y, Ma, Z, et al. Emotion reactivity-related brain network analysis in generalized anxiety disorder: a task fMRI study. BMC Psychiatry. 2020;20(1):429.10.1186/s12888-020-02831-6CrossRefGoogle ScholarPubMed
Koster, EH, Crombez, G, Verschuere, B, Van Damme, S, Wiersema, JR Components of attentional bias to threat in high trait anxiety: facilitated engagement, impaired disengagement, and attentional avoidance. Behav. Res. Ther. 2006;44(12):17571771.CrossRefGoogle ScholarPubMed
Ford, JD, Grasso, DJ, Elhai, JD, Courtois, CA. 5 - neurobiology of traumatic stress disorders and their impact on physical health. In: Ford, JD, Grasso, DJ, Elhai, JD, Courtois, CA, eds. Posttraumatic Stress Disorder (2nd ed. San Diego: Academic Press; 2015:183232.10.1016/B978-0-12-801288-8.00005-4CrossRefGoogle Scholar
Moran, JM, Heatherton, TF, Kelley, WM. Modulation of cortical midline structures by implicit and explicit self-relevance evaluation. Soc. Neurosci. 2009;4(3):197211.10.1080/17470910802250519CrossRefGoogle ScholarPubMed
Blair, KS, Geraci, M, Otero, M, et al. Atypical modulation of medial prefrontal cortex to self-referential comments in generalized social phobia. Psychiatry Res. 2011;193(1):3845.10.1016/j.pscychresns.2010.12.016CrossRefGoogle ScholarPubMed
Yoon, HJ, Seo, EH, Kim, JJ, Choo, IH. Neural correlates of self-referential processing and their clinical implications in social anxiety disorder. Clin Psychopharmacol Neurosci. 2019;17(1):1224.10.9758/cpn.2019.17.1.12CrossRefGoogle ScholarPubMed
Chen, J, Short, M, Kemps, E. Interpretation bias in social anxiety: a systematic review and meta-analysis. J. Affect. Disord. 2020;276:11191130.10.1016/j.jad.2020.07.121CrossRefGoogle ScholarPubMed
Xu, J, Van Dam, NT, Feng, C, et al. Anxious brain networks: a coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci. Biobehav. Rev. 2019;96:2130.10.1016/j.neubiorev.2018.11.005CrossRefGoogle ScholarPubMed
Adhikari, A, Lerner, TN, Finkelstein, J, et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature. 2015;527(7577):179185.10.1038/nature15698CrossRefGoogle ScholarPubMed
Etkin, A, Egner, T, Kalisch, R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 2011;15(2):8593.10.1016/j.tics.2010.11.004CrossRefGoogle ScholarPubMed
Hariri, AR, Tessitore, A, Mattay, VS, Fera, F, Weinberger, DR. The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage. 2002;17(1):317323.10.1006/nimg.2002.1179CrossRefGoogle ScholarPubMed
Pico-Perez, M, Radua, J, Steward, T, Menchon, JM, Soriano-Mas, C. Emotion regulation in mood and anxiety disorders: a meta-analysis of fMRI cognitive reappraisal studies. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017;79(Pt B):96104.10.1016/j.pnpbp.2017.06.001CrossRefGoogle ScholarPubMed
Reisch, LM, Wegrzyn, M, Woermann, FG, Bien, CG, Kissler, J. Negative content enhances stimulus-specific cerebral activity during free viewing of pictures, faces, and words. Hum. Brain Mapp. 2020;41(15):43324354.10.1002/hbm.25128CrossRefGoogle ScholarPubMed
Adamaszek, M, D’Agata, F, Kirkby, KC, et al. Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum. 2014;13(3):338345.10.1007/s12311-013-0537-0CrossRefGoogle ScholarPubMed
Ferrucci, R, Giannicola, G, Rosa, M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn. Emot. 2012;26(5):786799.10.1080/02699931.2011.619520CrossRefGoogle ScholarPubMed
Turner, BM, Paradiso, S, Marvel, CL, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):13311341.10.1016/j.neuropsychologia.2006.09.023CrossRefGoogle ScholarPubMed
Adamaszek, M, D’Agata, F, Ferrucci, R, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16(2):552576.10.1007/s12311-016-0815-8CrossRefGoogle ScholarPubMed
Northoff, G, Bermpohl, F. Cortical midline structures and the self. Trends Cogn. Sci.. 2004;8(3):102107.10.1016/j.tics.2004.01.004CrossRefGoogle ScholarPubMed
Andreescu, C, Sheu, LK, Tudorascu, D, Walker, S, Aizenstein, H. The ages of anxiety--differences across the lifespan in the default mode network functional connectivity in generalized anxiety disorder. Int. J. Geriatr. Psychiatry. 2014;29(7):704712.10.1002/gps.4051CrossRefGoogle ScholarPubMed
Hofer, A, Siedentopf, CM, Ischebeck, A, et al. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. Neuroimage. 2006;32(2):854862.10.1016/j.neuroimage.2006.03.053CrossRefGoogle ScholarPubMed
Hallers-Haalboom, ET, Maas, J, Kunst, LE, Bekker, MHJ. The role of sex and gender in anxiety disorders: being scared “like a girl”?. Handb. Clin. Neurol. 2020;175:359368.Google Scholar
Haxby, JV, Hoffman, EA, Gobbini, MI. Human neural systems for face recognition and social communication. Biol. Psychiatry. 2002;51(1):5967.CrossRefGoogle ScholarPubMed
Kanwisher, N, Yovel, G. The fusiform face area: a cortical region specialized for the perception of faces. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006;361(1476):21092128.10.1098/rstb.2006.1934CrossRefGoogle ScholarPubMed
Puce, A, Allison, T, Asgari, M, Gore, JC, McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 1996;16(16):52055215.10.1523/JNEUROSCI.16-16-05205.1996CrossRefGoogle ScholarPubMed
Dixon, ML, Moodie, CA, Goldin, PR, et al. Frontoparietal and default mode network contributions to self-referential processing in social anxiety disorder. Cogn. Affect. Behav. Neurosci. 2022;22(1):187198.10.3758/s13415-021-00933-6CrossRefGoogle ScholarPubMed
Harrewijn, A, Cardinale, EM, Groenewold, NA, et al. Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group. Transl Psychiatry. 2021;11(1):502.10.1038/s41398-021-01622-1CrossRefGoogle ScholarPubMed
Beesdo, K, Lau, JY, Guyer, AE, et al. Common and distinct amygdala-function perturbations in depressed vs anxious adolescents. Arch. Gen. Psychiatry. 2009;66(3):275285.CrossRefGoogle ScholarPubMed
Baumel, WT, Lu, L, Huang, X, et al. Neurocircuitry of treatment in anxiety disorders. Biomark Neuropsychiatry. 2022;6:100052.10.1016/j.bionps.2022.100052CrossRefGoogle ScholarPubMed
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material
Download Wang et al. supplementary material(File)
File 736.7 KB