Hostname: page-component-5b777bbd6c-7sgmh Total loading time: 0 Render date: 2025-06-19T10:40:04.938Z Has data issue: false hasContentIssue false

Drinfeld centers and Morita equivalence classes of fusion 2-categories

Published online by Cambridge University Press:  17 June 2025

Thibault D. Décoppet*
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK Current address: Department of Mathematics, Harvard University, Cambridge, MA 02138, USA decoppet@math.harvard.edu

Abstract

We prove that the Drinfeld center of a fusion 2-category is invariant under Morita equivalence. We go on to show that the concept of Morita equivalence between connected fusion 2-categories corresponds to a notion of Witt equivalence between braided fusion 1-categories. A strongly fusion 2-category is a fusion 2-category whose braided fusion 1-category of endomorphisms of the monoidal unit is $\mathbf{Vect}$ or $\mathbf{SVect}$. We prove that every fusion 2-category is Morita equivalent to the 2-Deligne tensor product of a strongly fusion 2-category and an invertible fusion 2-category. We proceed to show that every fusion 2-category is Morita equivalent to a connected fusion 2-category. As a consequence, we find that every rigid algebra in a fusion 2-category is separable. This implies in particular that every fusion 2-category is separable. Conjecturally, separability ensures that a fusion 2-category is 4-dualizable. We define the dimension of a fusion 2-category, and prove that it is always non-zero. Finally, we show that the Drinfeld center of any fusion 2-category is a finite semisimple 2-category.

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baez, J. and Dolan, J., Higher-dimensional algebra and topological quantum field theory , J. Math. Phys. 36 (1995), 60736105.CrossRefGoogle Scholar
Baez, J. C. and Neuchl, M., Higher-dimensional algebra I: Braided monoidal 2-categories , Adv. Math. 121 (1995), 196244.CrossRefGoogle Scholar
Barrett, J. W. and Westbury, B. W., Invariants of piecewise-linear 3-manifolds, Trans. Amer. Math. Soc. 348 (1996), 3997–4022.CrossRefGoogle Scholar
Brochier, A., Jordan, D., Safronov, P. and Snyder, N., Invertible braided tensor categories, Algebr. Geom. Topol. 12 (2021), 21072140.Google Scholar
Brochier, A., Jordan, D. and Snyder, N., On dualizability of braided tensor categories , Compos. Math. 3 (2021), 435483.CrossRefGoogle Scholar
Crans, S. E., Generalized centers of braided and sylleptic monoidal 2-categories , Adv. Math. 136 (1998), 183223.CrossRefGoogle Scholar
Davydov, A., Müger, M., Nikshych, D. and Ostrik, V., The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math. 2013 (2013), 135177.Google Scholar
Davydov, A. and Nikshych, D., Braided Picard groups and graded extensions of braided tensor categories, Selecta Math. (N.S.) 27 (2021), 65.Google Scholar
Davydov, A., Nikshych, D. and Ostrik, V., On the structure of the Witt group of braided fusion categories, Selecta Math. (N.S.) 19 (2013), 237–269.CrossRefGoogle Scholar
Day, B. and Street, R., Monoidal bicategories and Hopf algebroids , Adv. Math. 129 (1997), 99157.CrossRefGoogle Scholar
Décoppet, T. D., Finite semisimple module 2-categories, Sel. Math. New Ser. 31 (2025), 5.Google Scholar
Décoppet, T. D., Multifusion categories and finite semisimple 2-categories, J. Pure Appl. Algebra 226 (2022), 107029.Google Scholar
Décoppet, T. D., Weak fusion 2-categories, Cah. Topol. Géom. Différ. Catég. LXIII (2022), 3–24.Google Scholar
Décoppet, T. D., Compact semisimple 2-categories, Trans. Amer. Math. Soc. 376 (2023), 8309–8336.Google Scholar
Décoppet, T. D., The Morita theory of fusion 2-categories, High. Struct. 7 (2023), 234292.Google Scholar
Décoppet, T. D., On fusion 2-categories, PhD thesis, University of Oxford (2023).Google Scholar
Décoppet, T. D., Rigid and separable algebras in fusion 2-categories , Adv. Math. 419 (2023), 108967.CrossRefGoogle Scholar
Décoppet, T. D., The 2-Deligne tensor product, Kyoto J. Math. 64 (2024), 1–29.CrossRefGoogle Scholar
Deligne, P., Catégories tensorielles, Mosc. Math. J. 2 (2002), 227248.Google Scholar
Douglas, C. L. and Reutter, D. J., Fusion 2-categories and a state-sum invariant for 4-manifolds, Preprint (2018), arXiv:1812.11933.Google Scholar
Douglas, C. L., Schommer-Pries, C. and Snyder, N., Dualizable tensor categories, Mem. Amer. Math. Soc. 268 (2020), 1308.Google Scholar
Drinfeld, V., Quantum groups, in Proc. int. congr. of Mathematicians (American Mathematical Society, Berkeley, 1987), 798–820.Google Scholar
Drinfeld, V., Gelaki, S., Nikshych, D. and Ostrik, V., On braided fusion categories I, Selecta Math. (N.S.) 16 (2010), 1–119.CrossRefGoogle Scholar
Etingof, P., Nikshych, D. and Ostrik, V., On fusion categories, Ann. of Math. (2) 162 (2005), 581–642.CrossRefGoogle Scholar
Etingof, P., Nikshych, D. and Ostrik, V., Fusion categories and homotopy theory , Quantum Topol. 1 (2009), 209273.CrossRefGoogle Scholar
Etingof, P., Nikshych, D. and Ostrik, V., Weakly group-theoretical and solvable fusion categories , Adv. Math. 226 (2011), 176205.CrossRefGoogle Scholar
Gaiotto, D. and Johnson-Freyd, T., Condensations in higher categories, Preprint (2019), arXiv:1905.09566v2.Google Scholar
Gaiotto, D. and Johnson-Freyd, T., Symmetry protected topological phases and generalized cohomology, J. High Energy Phys. 2019 (2019), 7.Google Scholar
Gaitsgory, D., Sheaves of categories and the notion of 1-affineness, in Stacks and categories in geometry, topology, and algebra, Contemporary Mathematics, vol. 643 (American Mathematical Society, 2012), 127–226.Google Scholar
Galindo, C., Coherence for monoidal G-categories and braided G-crossed categories , J. Algebra 487 (2017), 118137.CrossRefGoogle Scholar
Garner, R. and Schulman, M., Enriched categories as a free cocompletion , Adv. Math. 289 (2016), 194.CrossRefGoogle Scholar
Greenough, J., Monoidal 2-structure of bimodule categories, J. Algebra 324 (2010), 1818–1859.CrossRefGoogle Scholar
Gurski, N., Coherence in three-dimensional category theory, Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 2013).Google Scholar
Hochschild, G. and Serre, J.-P., Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134.CrossRefGoogle Scholar
Johnson-Freyd, T., $(3+1)d$ topological orders with only a $\mathbb{Z}/2$ -charged particle, Preprint (2021), arXiv:2011.11165v1.Google Scholar
Johnson-Freyd, T., A 4D TQFT which is not (quite) a higher-form gauge theory (2022), https://www.youtube.com/watch?v=hsrxbYl451Q.Google Scholar
Johnson-Freyd, T., On the classification of topological orders, Comm. Math. Phys. 393 (2022), 9891033.Google Scholar
Johnson-Freyd, T. and Reutter, D. J., Minimal non-degenerate extensions, J. Amer. Math. Soc. 37 (2024), 81150.Google Scholar
Johnson-Freyd, T. and Scheimbauer, C., (Op)lax natural transformations, twisted quantum field theories, and ‘even higher’ Morita categories , Adv. Math. 307 (2017), 147223.CrossRefGoogle Scholar
Johnson-Freyd, T. and Yu, M., Fusion 2-categories with no line operators are grouplike, Bull. Aust. Math. Soc. 104 (2021), 434–442.CrossRefGoogle Scholar
Joyal, A. and Street, R., Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra 71 (1991), 4351.Google Scholar
Kirillov, A. Jr., Modular categories and orbifold models II, Preprint (2001), arXiv:0110221.Google Scholar
Kong, L., Tian, Y. and Zhou, S., The center of monoidal 2-categories in $3+1$ D Dijkgraaf-Witten theory, Adv. Math. 360 (2020), 106928.CrossRefGoogle Scholar
Lan, T., Kong, L. and Wen, X.-G., Modular extensions of unitary braided fusion categories and $2+1$ D topological/SPT orders with symmetries, Commun. Math. Phys. 351 (2017), 709739.CrossRefGoogle Scholar
Laugwitz, R., The relative monoidal center and tensor products of monoidal categories, Commun. Contemp. Math. 22 (2020), 1950068.Google Scholar
Lurie, J., On the classification of topological field theories , Curr. Dev. Math. 1 (2010), 129280.Google Scholar
Majid, S., Representations, duals and quantum doubles of monoidal categories, Rend. Circ. Mat. Palermo (2) 26 (1991), 197–206.Google Scholar
Müger, M., From subfactors to categories and topology II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180 (2003), 159219.Google Scholar
Müger, M., Galois extensions of braided tensor categories and braided crossed G-categories , J. Algebra 277 (2004), 256281.CrossRefGoogle Scholar
Nikshych, D., Computing the group of minimal non-degenerate extensions of a super-Tannakian category, Comm. Math. Phys. 396 (2022), 685711.Google Scholar
Opolka, H., Group extensions and group cohomology II , J. Algebra 169 (1994), 328331.CrossRefGoogle Scholar
Ostrik, V., Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not. IMRN 27 (2003), 1507–1520.CrossRefGoogle Scholar
Ostrik, V., Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), 177206.Google Scholar
Schommer-Pries, C. J., The classification of two-dimensional extended topological field theories, PhD thesis, UC Berkeley (2011).Google Scholar
Sính, H. X., Gr-catégories, PhD thesis, Université Paris VII (1975).Google Scholar
Sun, L., The symmetry enriched functor is fully faithful, Comm. Math. Phys. 395 (2022), 13451382.Google Scholar
Turaev, V. G., Modular categories and 3-manifolds invariants, Int. J. Modern Phys. B 6 (1992), 1807–1824.CrossRefGoogle Scholar
Turaev, V. G., Homotopy field theory in dimension 3 and crossed group-categories, Preprint (2000), arXiv:math/0005291.Google Scholar
Weibel, C. A., An introduction to homological algebra , Cambridge Studies in Mathematics, vol. 38 (Cambridge University Press, 1995).Google Scholar