Published online by Cambridge University Press: 21 September 2016
Let   $X$  be a compact Kähler manifold, endowed with an effective reduced divisor
 $X$  be a compact Kähler manifold, endowed with an effective reduced divisor   $B=\sum Y_{k}$  having simple normal crossing support. We consider a closed form of
 $B=\sum Y_{k}$  having simple normal crossing support. We consider a closed form of   $(1,1)$ -type
 $(1,1)$ -type   $\unicode[STIX]{x1D6FC}$  on
 $\unicode[STIX]{x1D6FC}$  on   $X$  whose corresponding class
 $X$  whose corresponding class   $\{\unicode[STIX]{x1D6FC}\}$  is nef, such that the class
 $\{\unicode[STIX]{x1D6FC}\}$  is nef, such that the class   $c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\}\in H^{1,1}(X,\mathbb{R})$  is pseudo-effective. A particular case of the first result we establish in this short note states the following. Let
 $c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\}\in H^{1,1}(X,\mathbb{R})$  is pseudo-effective. A particular case of the first result we establish in this short note states the following. Let   $m$  be a positive integer, and let
 $m$  be a positive integer, and let   $L$  be a line bundle on
 $L$  be a line bundle on   $X$ , such that there exists a generically injective morphism
 $X$ , such that there exists a generically injective morphism   $L\rightarrow \bigotimes ^{m}T_{X}^{\star }\langle B\rangle$ , where we denote by
 $L\rightarrow \bigotimes ^{m}T_{X}^{\star }\langle B\rangle$ , where we denote by   $T_{X}^{\star }\langle B\rangle$  the logarithmic cotangent bundle associated to the pair
 $T_{X}^{\star }\langle B\rangle$  the logarithmic cotangent bundle associated to the pair   $(X,B)$ . Then for any Kähler class
 $(X,B)$ . Then for any Kähler class   $\{\unicode[STIX]{x1D714}\}$  on
 $\{\unicode[STIX]{x1D714}\}$  on   $X$ , we have the inequality
 $X$ , we have the inequality  $$\begin{eqnarray}\displaystyle \int _{X}c_{1}(L)\wedge \{\unicode[STIX]{x1D714}\}^{n-1}\leqslant m\int _{X}(c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\})\wedge \{\unicode[STIX]{x1D714}\}^{n-1}.\end{eqnarray}$$
 $$\begin{eqnarray}\displaystyle \int _{X}c_{1}(L)\wedge \{\unicode[STIX]{x1D714}\}^{n-1}\leqslant m\int _{X}(c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\})\wedge \{\unicode[STIX]{x1D714}\}^{n-1}.\end{eqnarray}$$ $X$  is projective, then this result gives a generalization of a criterion due to Y. Miyaoka, concerning the generic semi-positivity: under the hypothesis above, let
 $X$  is projective, then this result gives a generalization of a criterion due to Y. Miyaoka, concerning the generic semi-positivity: under the hypothesis above, let   $Q$  be the quotient of
 $Q$  be the quotient of   $\bigotimes ^{m}T_{X}^{\star }\langle B\rangle$  by
 $\bigotimes ^{m}T_{X}^{\star }\langle B\rangle$  by   $L$ . Then its degree on a generic complete intersection curve
 $L$ . Then its degree on a generic complete intersection curve   $C\subset X$  is bounded from below by
 $C\subset X$  is bounded from below by  $$\begin{eqnarray}\displaystyle \biggl(\frac{n^{m}-1}{n-1}-m\biggr)\int _{C}(c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\})-\frac{n^{m}-1}{n-1}\int _{C}\unicode[STIX]{x1D6FC}.\end{eqnarray}$$
 $$\begin{eqnarray}\displaystyle \biggl(\frac{n^{m}-1}{n-1}-m\biggr)\int _{C}(c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\})-\frac{n^{m}-1}{n-1}\int _{C}\unicode[STIX]{x1D6FC}.\end{eqnarray}$$