Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-08-29T23:29:07.609Z Has data issue: false hasContentIssue false

Shuffle formula in science fiction for Macdonald polynomials

Published online by Cambridge University Press:  28 August 2025

Donghyun Kim
Affiliation:
Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea hyun920310@snu.ac.kr
Seung Jin Lee
Affiliation:
Department of Mathematical Sciences, Research institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea lsjin@snu.ac.kr
Jaeseong Oh
Affiliation:
June E Huh Center for Mathematical Challenges, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea jsoh@kias.re.kr

Abstract

We study the Macdonald intersection polynomials $\operatorname {I}_{\mu ^{(1)},\dots ,\mu ^{(k)}}[X;q,t]$, which are indexed by $k$-tuples of partitions $\mu ^{(1)},\dots ,\mu ^{(k)}$. These polynomials are conjectured to be equal to the bigraded Frobenius characteristic of the intersection of Garsia–Haiman modules, as proposed by the science fiction conjecture of Bergeron and Garsia. In this work, we establish the vanishing identity and the shape independence of the Macdonald intersection polynomials. Additionally, we unveil a remarkable connection between $\operatorname {I}_{\mu ^{(1)},\dots ,\mu ^{(k)}}$ and the character $\nabla e_{k-1}$ of diagonal coinvariant algebra by employing the plethystic formula for the Macdonald polynomials of Garsia, Haiman, and Tesler. Furthermore, we establish a connection between $\operatorname {I}_{\mu ^{(1)},\dots ,\mu ^{(k)}}$ and the shuffle formula $D_{k-1}[X;q,t]$, utilizing novel combinatorial tools such as the column exchange rule and the lightning bolt formula for Macdonald intersection polynomials. Notably, our findings provide a new proof for the shuffle theorem.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bergeron, F. and Garsia, A., Science fiction and Macdonalds polynomials, in Algebraic methods and q-special functions, CRM Proceedings and Lecture Notes, vol. 22 (American Mathematical Society, Providence, RI, 1999), 1–52.10.1090/crmp/022/01CrossRefGoogle Scholar
Bethe, H., Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der lineare Atomkette, Z. Physik 71 (1931), 205–226, English translation in The many-body problem, trans. V. Frederick, ed. D. C. Mattis (World Scientific, Singapore, 1993).Google Scholar
Blasiak, J., Haiman, M., Morse, J., Pun, A. and Seelinger, G., Dens, nests and the Loehr–Warrington conjecture, Preprint (2021), arXiv:2112.07070.Google Scholar
Blasiak, J., Haiman, M., Morse, J., Pun, A. and Seelinger, G. H., A proof of the extended delta conjecture, Forum Math. Pi 11 (2023), e6.Google Scholar
Blasiak, J., Haiman, M., Morse, J., Pun, A. and Seelinger, G. H., LLT polynomials in the Schiffmann algebra, J. Reine Angew. Math. 811 (2024), 93133.Google Scholar
Blasiak, J., Haiman, M., Morse, J., Pun, A. and Seelinger, G., A raising operator formula for Macdonald polynomials, Forum Math. Sigma 13 (2025), e47.Google Scholar
Butler, L. M., Subgroup lattices and symmetric functions, Mem. Amer. Math. Soc. 112 (1994), 539.Google Scholar
Carlsson, E. and Mellit, A., A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), 661697.Google Scholar
Carlsson, E. and Mellit, A., GKM spaces, and the signed positivity of the nabla operator, Preprint (2021), arXiv:2110.07591.Google Scholar
Carlsson, E. and Oblomkov, A., Affine Schubert calculus and double coinvariants, Preprint (2018), arXiv:1801.09033.Google Scholar
D’Adderio, M. and Mellit, A., A proof of the compositional delta conjecture, Adv. Math. 402 (2022), 108342.Google Scholar
Deutsch, E., Dyck path enumeration, Discrete Math. 204 (1999), 167202.Google Scholar
Eğecioğlu, Ö. and Remmel, J. B., Brick tabloids and the connection matrices between bases of symmetric functions, Discrete Appl. Math. 34 (1991), 107–120, Combinatorics and theoretical computer science (Washington, DC, 1989).10.1016/0166-218X(91)90081-7CrossRefGoogle Scholar
Garsia, A. M. and Haiman, M., A graded representation model for Macdonald’s polynomials, Proc. Natl. Acad. Sci. USA 90 (1993), 36073610.Google ScholarPubMed
Garsia, A. M. and Haiman, M., A remarkable $q,t$ -Catalan sequence and $q$ -Lagrange inversion, J. Algebraic Combin. 5 (1996), 191244.10.1023/A:1022476211638CrossRefGoogle Scholar
Garsia, A. M. and Haiman, M., Some natural bigraded $S_n$ -modules and $q,t$ -Kostka coefficients, Electron. J. Combin. 3 (1996), 24.10.37236/1282CrossRefGoogle Scholar
Garsia, A., Haglund, J., Qiu, D. and Romero, M., e-positivity results and conjectures, Preprint (2019), arXiv:1904.07912.Google Scholar
Garsia, A. M., Haiman, M. and Tesler, G., Explicit plethystic formulas for Macdonald q,t-Kostka coefficients, in The Andrews Festschrift (Maratea, 1998) (Springer, 1999), 253–297.10.1007/978-3-642-56513-7_13CrossRefGoogle Scholar
Garsia, A. M. and Tesler, G., Plethystic formulas for Macdonald $q,t$ -Kostka coefficients, Adv. Math. 123 (1996), 144222.10.1006/aima.1996.0071CrossRefGoogle Scholar
Gelfand, I. M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V. S. and Thibon, J.-Y., Noncommutative symmetric functions, Adv. Math. 112 (1995), 218348.Google Scholar
Gessel, I. M., Multipartite P-partitions and inner products of skew Schur functions, in Combinatorics and algebra (Boulder, CO, 1983), Contemporary Mathematics, vol. 34 (American Mathematical Society, Providence, RI, 1984), 289–317.10.1090/conm/034/777705CrossRefGoogle Scholar
Goresky, M., Kottwitz, R. and Macpherson, R., Homology of affine Springer fibers in the unramified case, Duke Math. J. 121 (2004), 509561.Google Scholar
Haglund, J., Conjectured statistics for the $q,t$ -Catalan numbers. Adv. Math. 175 (2003), 319334.10.1016/S0001-8708(02)00061-0CrossRefGoogle Scholar
Haglund, J., Haiman, M. and Loehr, N., A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), 735761.Google Scholar
Haglund, J., Haiman, M. and Loehr, N., A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math. 130 (2008), 359383.Google Scholar
Haglund, J., Haiman, M., Loehr, N., Remmel, J. B. and Ulyanov, A., A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), 195232.Google Scholar
Haglund, J. and Loehr, N., A conjectured combinatorial formula for the Hilbert series for diagonal harmonics, Discrete Math. 298 (2005), 189204.Google Scholar
Haiman, M., Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), 9411006.Google Scholar
Haiman, M., Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), 371407.Google Scholar
Hikita, T., Affine Springer fibers of type $A$ and combinatorics of diagonal coinvariants, Adv. Math. 263 (2014), 88122.10.1016/j.aim.2014.06.011CrossRefGoogle Scholar
Kerov, S. V., Kirillov, A. N. and Reshetikhin, N. Y., Combinatorics, the Bethe ansatz and representations of the symmetric group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), 5064.Google Scholar
Kim, D., Lee, S. J. and Oh, J., Toward Butler’s conjecture, Preprint (2022), arXiv:2212.09419.Google Scholar
Kreweras, G., Sur les partitions non croises d’un cycle, Discrete Math. 1 (1972), 333350.Google Scholar
Loehr, N. A. and Niese, E., New combinatorial formulations of the shuffle conjecture, Adv. Appl. Math. 55 (2014), 2247.Google Scholar
Macdonald, I., A new class of symmetric functions, Sém. Lothar. Combin. 20 (1988), B20a–41.Google Scholar
Mellit, A., Integrality of Hausel–Letellier–Villegas kernels, Duke Math. J. 167 (2018), 31713205.Google Scholar
Mellit, A., Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers, Ann. of Math. (2) 192 (2020), 165228.Google Scholar
Orr, D., Shimozono, M. and Wen, J., Wreath Macdonald operators, Preprint (2022), arXiv:2211.03851.Google Scholar
Neil, S., The on-line encyclopedia of integer sequences, http://oeis.org.Google Scholar
Wen, J., Wreath Macdonald polynomials as eigenstates, Preprint (2019), arXiv:1904.05015.Google Scholar