Hostname: page-component-857557d7f7-fn92c Total loading time: 0 Render date: 2025-12-01T01:16:36.768Z Has data issue: false hasContentIssue false

Using network of species interactions to value biodiversity conservation in a megadiverse country: a comparison of latent class and mixed logit models

Published online by Cambridge University Press:  24 November 2025

José Dávila-García
Affiliation:
ESAN University, Lima, Perú
Felipe Vásquez-Lavín*
Affiliation:
School of Business and Economics, Universidad del Desarrollo, Concepción, Chile Center of Applied Ecology and Sustainability, Santiago, Chile Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile Center for Climate and Resilience Research, Santiago, Chile
Carlos Orihuela
Affiliation:
Facultad de Economía y Planificación, Universidad Nacional Agraria La Molina, Lima, Perú Semillero de investigación Economía de los Recursos Naturales y del Ambiente, Lima, Perú
Alfredo Saldaña
Affiliation:
Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
Carlos Minaya
Affiliation:
Facultad de Economía y Planificación, Universidad Nacional Agraria La Molina, Lima, Perú
Raymundo Mogollón
Affiliation:
Facultad de Economía y Planificación, Universidad Nacional Agraria La Molina, Lima, Perú
*
Corresponding author: Felipe Vásquez-Lavín; Email: fvasquez@udd.cl

Abstract

This study examines whether different biodiversity proxies – species, habitat and functionality – satisfy the scope sensitivity and plausibility criteria in willingness to pay (WTP) estimation using a choice experiment in Manu National Park, Peru. We introduce the network of species interactions as a proxy for functionality and apply latent class (LC) models, including attribute non-attendance (ANA), to account for heterogeneity in preferences. Our results indicate that functionality is the only proxy consistently meeting both validity criteria across all specifications. LC analysis reveals two segments: one (74.4 per cent) displaying coherent, scope-sensitive WTP across biodiversity attributes, and another (25.6 per cent) less engaged, disregarding standard proxies but still valuing networks. Even under ANA constraints, networks remain salient for less attentive respondents, underscoring their cognitive accessibility in complex ecological contexts. These findings highlight the methodological and policy relevance of functionality-based proxies for biodiversity valuation in megadiverse environments, where conventional measures may fail to elicit behaviourally consistent responses.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allesina, S and Tang, S (2012) Stability criteria for complex ecosystems. Nature 483, 205208.10.1038/nature10832CrossRefGoogle ScholarPubMed
Arrow, K, Leamer, E, Schuman, H and Solow, R (1994) Appendix D. In Comments on proposed NOAA/DOI regulations on natural resource damage assessment. Washington, D.C.: U.S. Environmental Protection Agency, pp. .Google Scholar
Arrow, K, Solow, R, Portney, P, Leamer, E, Radner, R and Schuman, H (1993) Report of the NOAA Panel on Contingent Valuation. Federal Register 58(10), 46014614.Google Scholar
Arrow, KJ, Cropper, ML, Eads, GC, Hahn, RW, Lave, LB, Noll, RG, Portney, PR, Russell, M, Schmalensee, R, Smith, VK and Stavins, RN (1996) Benefit-Cost Analysis in Environmental, Health, and Safety Regulation. Washington, DC: American Enterprise Institute.Google ScholarPubMed
Bakhtiari, F, Jacobsen, JB, Strange, N and Helles, F (2014) Revealing lay people’s perceptions of forest biodiversity value components and their application in valuation method. Global Ecology and Conservation 1, 2742.10.1016/j.gecco.2014.07.003CrossRefGoogle Scholar
Bakhtiari, F, Jacobsen, JB, Thorsen, BJ, Lundhede, TH, Strange, N and Boman, M (2018) Disentangling distance and country effects on the value of conservation across national borders. Ecological Economics 147, 1120.10.1016/j.ecolecon.2017.12.019CrossRefGoogle Scholar
Barreiro-Hurlé, J and Gómez-Limón, JA (2008) Reconsidering heterogeneity and aggregation issues in environmental valuation: A multi-attribute approach. Environmental and Resource Economics 40, 551570.10.1007/s10640-007-9169-5CrossRefGoogle Scholar
Bartkowski, B, Lienhoop, N and Hansjürgens, B (2015) Capturing the complexity of biodiversity: A critical review of economic valuation studies of biological diversity. Ecological Economics 113, 114.10.1016/j.ecolecon.2015.02.023CrossRefGoogle Scholar
Bateman, IJ and Mace, GM (2020) The natural capital framework for sustainably efficient and equitable decision making. Nature Sustainability 3, 776783.10.1038/s41893-020-0552-3CrossRefGoogle Scholar
Ben-Akiva, M, McFadden, D, Abe, M, Böckenholt, U, Bolduc, D, Gopinath, D and Steinberg, D (1997) Modeling methods for discrete choice analysis. Marketing Letters 8, 273286.10.1023/A:1007956429024CrossRefGoogle Scholar
Borzykowski, N, Baranzini, A and Maradan, D (2018) Scope effects in contingent valuation: Does the assumed statistical distribution of WTP matter? Ecological Economics 144, 319329.10.1016/j.ecolecon.2017.09.005CrossRefGoogle Scholar
Boxall, PC and Adamowicz, WL (2002) Understanding heterogeneous preferences in random utility models: A latent class approach. Environmental and Resource Economics 23, 421446.10.1023/A:1021351721619CrossRefGoogle Scholar
Boxall, PC, Adamowicz, WL, Swait, J, Williams, M and Louviere, J (1996) A comparison of stated preference methods for environmental valuation. Ecological Economics 18, 243253.10.1016/0921-8009(96)00039-0CrossRefGoogle Scholar
Boyle, KJ, Bishop, RC, Hellerstein, D, Welsh, MP, Ahearn, MC, Laughland, A, Charbonneau, J and O’Conner, R (1998) Test of scope in contingent-valuation studies: Are the numbers for the birds? Paper presented at the World Congress of Environmental and Resource Economists, 1998, Venice, Italy.Google Scholar
Brown, TC and Duffield, JW (1995) Testing part‐whole valuation effects in contingent valuation of instream flow protection. Water Resources Research 31, 23412351.10.1029/95WR01744CrossRefGoogle Scholar
Burrows, J, Newman, R, Genser, J and Plewes, J (2017) Do contingent valuation estimates of willingness to pay for nonuse environmental goods pass the scope test with adequacy? A review of the evidence from empirical studies in the literature. In McFadden, D and Train, K (eds.), Contingent Valuation of Environmental Goods. Cheltenham, UK and Northampton, MA, USA: Edward Elgar, pp. 82152.Google Scholar
Carson, RT and Groves, T (2007) Incentive and informational properties of preference questions. Environmental and Resource Economics 37, 181210.10.1007/s10640-007-9124-5CrossRefGoogle Scholar
Carson, RT and Mitchell, RC (1995) Sequencing and nesting in contingent valuation surveys. Journal of Environmental Economics and Management 28, 155173.10.1006/jeem.1995.1011CrossRefGoogle Scholar
CBD (1992) The United Nations Convention on Biological Diversity. Reprinted in International Legal Materials. Available at https://www.cbd.int/doc/legal/cbd-en.pdf (accessed 15 September 2023).Google Scholar
CBD (2016) Like-minded megadiverse countries carta to achieve Aichi Biodiversity Target 11. Convention on Biological Diversity. Available at https://www.cbd.int/doc/meetings/cop/cop-13/information/cop-13-inf-45-en.pdf (accessed 21 March 2023).Google Scholar
Christie, M, Hanley, N, Warren, J, Murphy, K, Wright, R and Hyde, T (2006) Valuing the diversity of biodiversity. Ecological Economics 58, 304317.10.1016/j.ecolecon.2005.07.034CrossRefGoogle Scholar
Crespo-Cebada, E, Díaz-Caro, C, Robina-Ramírez, R and Sánchez-Hernández, MI (2020) Is biodiversity a relevant attribute for assessing Natural Parks? Evidence from Cornalvo Natural Park in Spain. Forests 11, .10.3390/f11040410CrossRefGoogle Scholar
Czajkowski, M and Hanley, N (2009) Using labels to investigate scope effects in stated preference methods. Environmental and Resource Economics 44, 521535.10.1007/s10640-009-9299-zCrossRefGoogle Scholar
Daly, A, Hess, S and Train, K (2012) Assuring finite moments for willingness to pay in random coefficient models. Transportation 39, 1931.10.1007/s11116-011-9331-3CrossRefGoogle Scholar
Dasgupta, P (2021) The Economics of Biodiversity: The Dasgupta Review. London: HM Treasury.Google Scholar
Dechasa, F, Senbeta, F and Guta, DD (2021) Economic value of wetlands services in the Central Rift Valley of Ethiopia. Environmental Economics and Policy Studies 23, 2953.10.1007/s10018-020-00277-4CrossRefGoogle Scholar
Diamond, P, Hausman, J, Gregory, K and Denning, M (1993) Does CV measure preferences? Experimental evidence. In Hausman, JA (ed.), Contingent Valuation: A Critical Assessment. UK: Emerald, pp. 4289.Google Scholar
Dugstad, A, Grimsrud, KM, Kipperberg, G, Lindhjem, H and Navrud, S (2021) Scope elasticity of willingness to pay in discrete choice experiments. Environmental and Resource Economics 80, 2157.10.1007/s10640-021-00577-7CrossRefGoogle Scholar
Emang, D, Lundhede, TH and Thorsen, BJ (2020) The role of divers’ experience for their valuation of diving site conservation: The case of Sipadan, Borneo. Journal of Outdoor Recreation and Tourism 32, .10.1016/j.jort.2019.100237CrossRefGoogle Scholar
Ferrini, S and Turner, RK (2018) McFadden, Daniel and Train, Kenneth: Contingent valuation of environmental goods: A comprehensive critique. Journal of Economics 125, 205207.10.1007/s00712-018-0606-4CrossRefGoogle Scholar
Fraser, IM, Roberts, DL and Brock, M (2023) The economics of species extinction: An economist’s viewpoint. Cambridge Prisms: Extinction 1, .Google ScholarPubMed
Frontuto, V, Dalmazzone, S, Vallino, E and Giaccaria, S (2017) Earmarking conservation: Further inquiry on scope effects in stated preference methods applied to nature-based tourism. Tourism Management 60, 130139.10.1016/j.tourman.2016.11.017CrossRefGoogle Scholar
Giraud, K and Valcic, B (2004) Willingness-to-pay estimates and geographic embedded samples: Case study of Alaskan Steller sea lion. Journal of International Wildlife Law and Policy 7, 5772.10.1080/13880290490480167CrossRefGoogle Scholar
Hanemann, WM (1994) Valuing the environment through contingent valuation. Journal of Economic Perspectives 8, 1943.10.1257/jep.8.4.19CrossRefGoogle Scholar
Hanley, N and Perrings, C (2019) The economic value of biodiversity. Annual Review of Resource Economics 11, 355375.10.1146/annurev-resource-100518-093946CrossRefGoogle Scholar
Hanley, N, Wright, RE and Adamowicz, V (1998) Using choice experiments to value the environment. Environmental and Resource Economics 11, 413428.10.1023/A:1008287310583CrossRefGoogle Scholar
Hausmann, A, Slotow, R, Fraser, I and Di Minin, E (2017) Ecotourism marketing alternative to charismatic megafauna can also support biodiversity conservation. Animal Conservation 20, 91100.10.1111/acv.12292CrossRefGoogle Scholar
Hess, S, Train, KE and Polak, JW (2006) On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit model for vehicle choice. Transportation Research Part B: Methodological 40, 147163.10.1016/j.trb.2004.10.005CrossRefGoogle Scholar
Hjerpe, E, Hussain, A and Phillips, S (2015) Valuing type and scope of ecosystem conservation: A meta-analysis. Journal of Forest Economics 21, 3250.10.1016/j.jfe.2014.12.001CrossRefGoogle Scholar
Hole, AR (2007) Fitting mixed logit models by using maximum simulated likelihood. The Stata Journal 7, 388401.10.1177/1536867X0700700306CrossRefGoogle Scholar
Hole, AR (2011) Attribute non-attendance in nonmarket valuation: A review. Environmental and Resource Economics 49, 415432.Google Scholar
Hoyos, D, Mariel, P, Pascual, U and Etxano, I (2012) Valuing a Natura 2000 network site to inform land use options using a discrete choice experiment: An illustration from the Basque Country. Journal of Forest Economics 18, 329344.10.1016/j.jfe.2012.05.002CrossRefGoogle Scholar
INEI (2021a) Estadísticas de las Tecnologías de la Información y Comunicación en los Hogares. Trimestre: Octubre-Noviembre-Diciembre 2021. Available at https://www.inei.gob.pe/media/MenuRecursivo/boletines/01-informe-tecnico-tic-iv-trimestre-2021.pdf (accessed 22 August 2023). (in Spanish).Google Scholar
INEI (2021b) Encuesta Nacional de Hogares 2021 (ENAHO): Resultados. INEI. Available at https://datosabiertos.gob.pe/dataset/encuesta-nacional-de-hogares-enaho-2021-instituto-nacional-de-estad%C3%ADstica-e-inform%C3%A1tica-%E2%80%93 (accessed 4 April 2023). (in Spanish).Google Scholar
Jacobsen, JB, Boiesen, H, Thorsen, BJ and Strange, N (2008) What’s in a name? The use of quantitative measures versus’ Iconised’ species when valuing biodiversity. Environmental and Resource Economics 39, 247263.10.1007/s10640-007-9107-6CrossRefGoogle Scholar
Jacobsen, JB, Lundhede, TH, Martinsen, L, Hasler, B and Thorsen, BJ (2011) Embedding effects in choice experiment valuations of environmental preservation projects. Ecological Economics 70, 11701177.10.1016/j.ecolecon.2011.01.013CrossRefGoogle Scholar
Jacobsen, JB, Lundhede, TH and Thorsen, BJ (2013) The effects of current income and expected change in future income on stated preferences for environmental improvements. Journal of Forest Economics 19, 206219.10.1016/j.jfe.2013.02.002CrossRefGoogle Scholar
Jin, J, He, R, Wang, W and Gong, H (2018) Valuing cultivated land protection: A contingent valuation and choice experiment study in China. Land Use Policy 74, 214219.10.1016/j.landusepol.2017.09.023CrossRefGoogle Scholar
Johnston, RJ, Börger, T, Hanley, N, Meginnis, K, Ndebele, T, Siyal, GEA and de Vries, FP (2024) Consequences of omitting non-lethal wildlife impacts from stated preference scenarios. Journal of Environmental Economics and Management 126, .10.1016/j.jeem.2024.103011CrossRefGoogle Scholar
Johnston, RJ, Boyle, KJ, Adamowicz, W, Bennett, J, Brouwer, R, Cameron, TA, Hanemann, WM, Hanley, N, Ryan, M, Scarpa, R, Tourangeau, R and Vossler, CA (2017) Contemporary guidance for stated preference studies. Journal of the Association of Environmental and Resource Economists 4, 319405.10.1086/691697CrossRefGoogle Scholar
Jordano, P (2016) Chasing ecological interactions. PLOS Biology 14, .10.1371/journal.pbio.1002559CrossRefGoogle ScholarPubMed
Kahneman, D and Knetsch, J (1992) Valuing public goods: The purchase of moral satisfaction. Journal of Environmental Economics and Management 22, 5770.10.1016/0095-0696(92)90019-SCrossRefGoogle Scholar
Lavado-Solis, K, Orihuela, CE, Vásquez-Lavín, F and Dávila, J (2021) Economic value of biodiversity conservation: The case of the Yanachaga-Chemillén National Park. Agricultural and Resource Economics 21, 101120.Google Scholar
Lew, DK, Layton, DF and Rowe, RD (2010) Valuing enhancements to endangered species protection under alternative baseline futures: The case of the Steller sea lion. Marine Resource Economics 25, 133154.10.5950/0738-1360-25.2.133CrossRefGoogle Scholar
Lew, DK and Wallmo, K (2011) External tests of scope and embedding in stated preference choice experiments: An application to endangered species valuation. Environmental and Resource Economics 48, 123.10.1007/s10640-010-9394-1CrossRefGoogle Scholar
Lew, DK and Whitehead, JC (2020) Attribute non-attendance as an information processing strategy in choice experiments. Journal of Choice Modelling 34, .Google Scholar
LimaCómoVamos (2022) ¿Cómo Vamos en Lima y Callao? Reporte Urbano de Indicadores de Calidad de Vida 2021. Available at https://www.limacomovamos.org/wp-content/uploads/2022/11/ReporteIndicadoresLCV2021.pdf (accessed 10 July 2023). (in Spanish).Google Scholar
Loomis, J, Lockwood, M and DeLacy, T (1993) Some empirical evidence on embedding effects in contingent valuation of forest protection. Journal of Environmental Economics and Management 25, 4555.10.1006/jeem.1993.1025CrossRefGoogle Scholar
Louviere, J, Hensher, DA and Swait, J (2000) Stated Choice Methods Analysis and Applications. Cambridge, UK: Cambridge University Press.10.1017/CBO9780511753831CrossRefGoogle Scholar
Lundberg, P, Veríssimo, D, Vainio, A and Arponen, A (2020) Preferences for different flagship types in fundraising for nature conservation. Biological Conservation 250, .10.1016/j.biocon.2020.108738CrossRefGoogle Scholar
Martin-Ortega, J, Mesa-Jurado, M and Berbel, J (2015) Revisiting the impact of order effects on sensitivity to scope: A contingent valuation of a common-pool resource. Journal of Agricultural Economics 66, 705726.10.1111/1477-9552.12105CrossRefGoogle Scholar
McDaniels, TL, Gregory, R, Arvai, J and Chuenpagdee, R (2003) Decision structuring to alleviate embedding in environmental valuation. Ecological Economics 46, 3346.10.1016/S0921-8009(03)00103-4CrossRefGoogle Scholar
McFadden, D (1974) Conditional Logit Analysis Of Qualitative Choice Behaviour. New York: Academic Press.Google Scholar
McFadden, D (1994) Contingent valuation and social choice. American Journal of Agricultural Eeconomics 76, 689708.10.2307/1243732CrossRefGoogle Scholar
McFadden, D and Train, K (2000) Mixed MNL models for discrete response. Journal of Applied Econometrics 15, 447470.10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-13.0.CO;2-1>CrossRefGoogle Scholar
Ojea, E and Loureiro, ML (2009) Valuation of wildlife: Revising some additional considerations for scope tests. Contemporary Economic Policy 27, 236250.10.1111/j.1465-7287.2008.00129.xCrossRefGoogle Scholar
Ojea, E and Loureiro, ML (2011) Identifying the scope effect on a meta-analysis of biodiversity valuation studies. Resource and Energy Economics 33, 706724.10.1016/j.reseneeco.2011.03.002CrossRefGoogle Scholar
Olar, M, Adamowicz, W, Boxall, P, West, GE, Lessard, F and Cantin, G (2007) Estimation of the economic benefits of marine mammal recovery in the St. Lawrence Estuary. Canada: Department of Fisheries and Oceans, Quebec Region, Policy and Economics Branch.Google Scholar
Powe, NA and Bateman, IJ (2004) Investigating insensitivity to scope: A split-sample test of perceived scheme realism. Land Economics 80, 258271.10.2307/3654742CrossRefGoogle Scholar
Puckett, SM and Rose, JM (2010) Observed efficiency of a D-optimal design in an interactive agency choice experiment. In Hess, S and Daly, A (eds.), Choice Modelling: The State-of-the-art and The State-of-practice: Proceedings from the Inaugural International Choice Modelling Conference. UK: Emerald Group Publishing Limited, pp. 163193.10.1108/9781849507738-007CrossRefGoogle Scholar
Rambonilaza, T and Brahic, E (2016) Nonmarket values of forest biodiversity and the impact of informing the general public: Insights from generalized multinomial logit estimations. Environmental Science and Policy 64, 93100.10.1016/j.envsci.2016.06.008CrossRefGoogle Scholar
Ring, I, Hansjürgens, B, Elmqvist, T, Wittmer, H and Sukhdev, P (2010) Challenges in framing the economics of ecosystems and biodiversity: The TEEB initiative. Current Opinion in Environmental Sustainability 2, 1526.10.1016/j.cosust.2010.03.005CrossRefGoogle Scholar
Rolfe, J, Bennett, J and Louviere, J (2000) Choice modelling and its potential application to tropical rainforest preservation. Ecological Economics 35, 289302.10.1016/S0921-8009(00)00201-9CrossRefGoogle Scholar
Rolfe, J and Windle, J (2012) Distance decay functions for iconic assets: Assessing national values to protect the health of the Great Barrier Reef in Australia. Environmental and Resource Economics 53, 347365.10.1007/s10640-012-9565-3CrossRefGoogle Scholar
Rollins, K and Lyke, A (1998) The case for diminishing marginal existence values. Journal of Environmental Economics and Management 36, 324344.10.1006/jeem.1998.1045CrossRefGoogle Scholar
Ryan, M and Amaya‐Amaya, M (2005) ‘Threats’ to and hopes for estimating benefits. Health Economics 14, 609619.10.1002/hec.949CrossRefGoogle ScholarPubMed
Scarpa, R, Gilbride, TJ, Campbell, D and Hensher, DA (2009) Modelling attribute non-attendance in choice experiments for rural landscape valuation. European Review of Agricultural Economics 36, 151174.10.1093/erae/jbp012CrossRefGoogle Scholar
Scarpa, R and Thiene, M (2005) Destination choice models for rock climbing in the North–Eastern Alps: A latent-class approach based on intensity of participation. Land Economics 81, 426444.10.3368/le.81.3.426CrossRefGoogle Scholar
SERNANP (2014) Plan Maestro del Parque Nacional del Manu. Diagnóstico 2013–2018. Servicio Nacional de Áreas Naturales Protegidas. Available at https://sis.sernanp.gob.pe/biblioteca/?publicacion=1572 (accessed 7 February 2021). (in Spanish).Google Scholar
Shoyama, K, Managi, S and Yamagata, Y (2013) Public preferences for biodiversity conservation and climate-change mitigation: A choice experiment using ecosystem services indicators. Land Use Policy 34, 282293.10.1016/j.landusepol.2013.04.003CrossRefGoogle Scholar
Spencer-Cotton, A, Kragt, ME and Burton, M (2018) Spatial and scope effects: Valuations of coastal management practices. Journal of Agricultural Economics 69, 833851.10.1111/1477-9552.12301CrossRefGoogle Scholar
Strange, N, Ermgassen, SZ, Marshall, E, Bull, JW and Jacobsen, JB (2024) Why it matters how biodiversity is measured in environmental valuation studies compared to conservation science. Biological Conservation 292, .10.1016/j.biocon.2024.110546CrossRefGoogle Scholar
Szabó, Z (2011) Reducing protest responses by deliberative monetary valuation: Improving the validity of biodiversity valuation. Ecological Economics 72, 3744.10.1016/j.ecolecon.2011.09.025CrossRefGoogle Scholar
Thiene, M, Meyerhoff, J and De Salvo, M (2012) Scale and taste heterogeneity for forest biodiversity: Models of serial nonparticipation and their effects. Journal of Forest Economics 18, 355369.10.1016/j.jfe.2012.06.005CrossRefGoogle Scholar
Train, K (2009) Discrete Choice Methods with Simulation. Cambridge, UK: Cambridge University Press.Google Scholar
Train, K and Weeks, M (2005) Discrete choice models in preference space and willingness-to-pay space. In Scarpa, R and Alberini, A (eds.), Applications of Simulation Methods in Environmental and Resource Economics. Netherlands: Springer, pp. 116.Google Scholar
Turak, E, Harrison, I, Dudgeon, D, Abell, R, Bush, A, Darwall, W, Finlayson, CM, Ferrier, S, Freyhof, J, Hermoso, V, Juffe-Bignoli, D, Linke, S, Nel, J, Patricio, HC, Pittock, J, Raghavan, R, Revenga, C, Simaika, JP and De Wever, A (2017) Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biological Conservation 213, 272279.10.1016/j.biocon.2016.09.005CrossRefGoogle Scholar
Tylianakis, JM, Laliberté, E, Nielsen, A and Bascompte, J (2010) Conservation of species interaction networks. Biological Conservation 143, 22702279.10.1016/j.biocon.2009.12.004CrossRefGoogle Scholar
Weller, P and Elsasser, P (2018) Preferences for forest structural attributes in Germany – Evidence from a choice experiment. Forest Policy and Economics 93, 19.10.1016/j.forpol.2018.04.013CrossRefGoogle Scholar
Whitehead, JC (2016) Plausible responsiveness to scope in contingent valuation. Ecological Economics 128, 1722.10.1016/j.ecolecon.2016.03.011CrossRefGoogle Scholar
Whitehead, JC, Groothuis, PA, Southwick, R and Foster-Turley, P (2009) Measuring the economic benefits of Saginaw Bay coastal marsh with revealed and stated preference methods. Journal of Great Lakes Research 35, 430437.10.1016/j.jglr.2009.03.005CrossRefGoogle Scholar
Supplementary material: File

Dávila-García et al. supplementary material

Dávila-García et al. supplementary material
Download Dávila-García et al. supplementary material(File)
File 174 KB