Hostname: page-component-5b777bbd6c-gcwzt Total loading time: 0 Render date: 2025-06-24T21:40:35.691Z Has data issue: false hasContentIssue false

Developing land-use planning scenarios in Türkiye to reduce water-induced soil erosion

Published online by Cambridge University Press:  16 December 2024

Fikret Saygın
Affiliation:
Sivas University of Science and Technology, Faculty of Agriculture Sciences and Technology, Field Crops Department, Sivas, Türkiye
Halil Aytop*
Affiliation:
East Mediterranean Transitional Zone Agricultural Research of Institute (TAGEM/MoAF), Kahramanmaraş, Türkiye
Orhan Dengiz
Affiliation:
Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Ondokuz Mayis University, Samsun, Türkiye
*
Corresponding author: Halil Aytop; Email: halilaytop@gmail.com

Summary

Because soil erosion constrains agricultural productivity and overuse of soils exacerbates erosion, land use can only be sustained through the implementation of land evaluation. We studied five land-use scenarios including erosion-reducing land terracing and contour farming using ILSEN modelling. These scenarios’ rates of soil loss were determined using the revised universal soil loss equation (RUSLE) method. We found that all the erosion-reducing scenarios reduced soil loss compared to the current land use of the study area; in the non-agricultural land use, soil erosion was reduced 4.25 times. The model is expected to inform reduction of soil erosion in geographies characterized by rugged topography.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alonso, MJ (2017) Environmental Requirements, Gradziel. M.T., Almonds Botany, Production and Uses. Croydon, UK: CPI Group (UK) Ltd.Google Scholar
April, J, Better, M, Glover, F, Kelly, J, Laguna, M (2006) Enhancing business process management with simulation optimization. In: Proceedings of the 2006 Winter Simulation Conference (pp. 642649). Piscataway, NJ, USA: IEEE.CrossRefGoogle Scholar
Arnoldus, HMJ (1980) An approximation of the rainfall factor in the universal soil loss equation. In: De Boodt, M, Gabriels, D (eds), Assessment of Erosion (pp. 127132). Chichester, UK: Wiley.Google Scholar
Aytop, H, Pınar, (2024) Evaluation of agricultural productivity loss of vineyards through water erosion in Türkiye. Applied Fruit Science 66: 667676.CrossRefGoogle Scholar
Aytop, H, Şenol, S (2022) The effect of different land use planning scenarios on the amount of total soil losses in the Mikail Stream Micro-Basin. Environmental Monitoring and Assessment 194: 321.CrossRefGoogle ScholarPubMed
Azimi Sardari, MR, Bazrafshan, O, Panagopoulos, T, Sardooi, ER (2019) Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed. Sustainability 11: 3353.CrossRefGoogle Scholar
Badiu, D, Arion, FH, Muresan, IC, Lile, R, Mitre, V (2015) Evaluation of economic efficiency of apple orchard investments. Sustainability 7: 1052110533.CrossRefGoogle Scholar
Bakker, MM, Govers, G, Jones, RA, Rounsevell, MD (2007) The effect of soil erosion on Europe’s crop yields. Ecosystems 10: 12091219.CrossRefGoogle Scholar
Bayraktar, K (1981) Sebze Yetiştirme, Kültür Bitkileri, Cilt 2. İzmir, Türkiye: Ege Üniversitesi Ziraat Fakültesi Yayınları.Google Scholar
Begg, EL, Huntington, GL, Wildman, WE (1998) Evaluation and modification of soils. In: DE, Ramos (ed.), Walnut Production Manual (pp. 3953). Los Angeles, CA, USA: University of California.Google Scholar
Benzer, N (2010) Using the geographical information system and remote sensing techniques for soil erosion assessment. Polish Journal of Environmental Studies 19: 881886.Google Scholar
Bircher, P, Liniger, HP, Prasuhn, V (2019) Comparing different multiple flow algorithms to calculate RUSLE factors of slope length (L) and slope steepness (S) in Switzerland. Geomorphology 346: 106850.CrossRefGoogle Scholar
Birnholz, C, Paul, B, Sommer, R, Nijbroek, R (2022) Modeling soil erosion impacts and trade-offs of sustainable land management practices in the Upper Tana Region of the Central Highlands in Kenya. In: Timlin, DJ, Anapalli, SS (eds), Enhancing Agricultural Research and Precision Management for Subsistence Farming by Integrating System Models with Experiments (pp. 628). Chichester, UK: Wiley.CrossRefGoogle Scholar
Borrelli, P, Robinson, DA, Fleischer, LR, Lugato, E, Ballabio, C, Alewell, C et al. (2017) An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8: 2013.CrossRefGoogle ScholarPubMed
Chuenchum, P, Xu, M, Tang, W (2020) Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. International Soil and Water Conservation Research 8: 213227.CrossRefGoogle Scholar
Colombo, S, Hanley, N, Calatrava-Requena, J (2005) Designing policy for reducing the off-farm effects of soil erosion using choice experiments. Journal of Agricultural Economics 56: 8195.CrossRefGoogle Scholar
De Leijster, V, Verburg, RW, Santos, MJ, Wassen, MJ, Martínez-Mena, M, De Vente, J, Verweij, PA (2020) Almond farm profitability under agroecological management in south-eastern Spain: accounting for externalities and opportunity costs. Agricultural Systems 183: 102878.CrossRefGoogle Scholar
Deumlich, D, Mioduszewski, W, Kajewski, I, Tippl, M, Dannowski, R (2005) GIS-based risk assessment for identifying source areas of non-point nutrient emissions by water erosion (Odra Basin and sub catchment Uecker). Archives of Agronomy and Soil Science 51: 447458.CrossRefGoogle Scholar
Diamond, J (2004) The Enigmas of Easter Island by Flenley J, Bahn P. New York Review of Books [www document]. URL https://www.nybooks.com/articles/2004/03/25/twilight-at-easter/ Google Scholar
Didoné, EJ, Minella, JPG, Piccilli, DGA (2021) How to model the effect of mechanical erosion control practices at a catchment scale? International Soil and Water Conservation Research 9: 370380.CrossRefGoogle Scholar
Do, VH, La, N, Bergkvist, G, Dahlin, SA, Mulia, R, Nguyen, VT, Öborn, I (2023) Agroforestry with contour planting of grass contributes to terrace formation and conservation of soil and nutrients on sloping land. Agriculture, Ecosystems & Environment 345: 108323.CrossRefGoogle Scholar
Duran, C (2013) Türkiye’nin bitki çeşitliliğinde dağlık alanların rolü. Biyoloji Bilimleri Araştırma Dergisi 6: 7277.Google Scholar
Dymond, JR, Betts, HD, Schierlitz, CS (2010) An erosion model for evaluating regional land-use scenarios. Environmental Modelling & Software 25: 289298.CrossRefGoogle Scholar
El Jazouli, A, Barakat, A, Ghafiri, A, El Moutaki, S, Ettaqy, A, Khellouk, R (2017) Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geoscience Letters 4: 25.CrossRefGoogle Scholar
Erpul, G, Sahin, S, Ince, K, Kucumen, A, Akdag, MA, Demirtas, I, Cetin, E (2018) Water Erosion Atlas of Turkey. Ankara, Türkiye: General Directorate of Desertification and Combating Erosion Publication.Google Scholar
FAO (1977) A Framework for Land Evaluation. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement.Google Scholar
FAO (2000) Manual on Integrated Soil Management and Conservation Practices. Rome, Italy: FAO.Google Scholar
FAO (2003) Soil and Water Conservation with a Focus on Water Harvesting and Soil Moisture Retention. Nairobi, Kenya: Ministry of Agriculture and Rural Development.Google Scholar
FAO (2016) Global soil partnership endorses guidelines on sustainable soil management. FAO [www document]. URL https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/ Google Scholar
FAOSTAT (2004) FAO, Food Balance Sheets. Food and Agriculture Organization of the United Nations [www document]. URL http://faostat.fao.org/site/368/default.aspx#ancor Google Scholar
Gong, W, Liu, T, Duan, X, Sun, Y, Zhang, Y, Tong, X, Qiu, Z (2022) Estimating the soil erosion response to land-use land-cover change using GIS-Based RUSLE and remote sensing: a case study of Miyun Reservoir, north China. Water 14: 742.CrossRefGoogle Scholar
Gutzler, C, Helming, K, Balla, D, Dannowski, R, Deumlich, D, Glemnitz, M et al. (2015) Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany. Ecological Indicators 48: 505517.CrossRefGoogle Scholar
Han, J, Ge, W, Hei, Z, Cong, C, Ma, C, Xie, M, et al. (2020) Agricultural land use and management weaken the soil erosion induced by extreme rainstorms. Agriculture, Ecosystems & Environment 301: 107047.CrossRefGoogle Scholar
Islam, M R, Jaafar, WZW, Hin, LS, Osman, N, Karim, MR (2020) Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE. Applied Water Science 10: 111.CrossRefGoogle Scholar
Kumar, M, Sahu, AP, Sahoo, N, Dash, SS, Raul, SK, Panigrahi, B (2022) Global-scale application of the RUSLE model: a comprehensive review. Hydrological Sciences Journal 67: 806830.CrossRefGoogle Scholar
Kün, E (1983) Serin İklim Tahılları, Yayın no 240. Ankara, Türkiye: Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ders Kitabı.Google Scholar
Lordan, J, Gomez, M, Francescatto, P, Robinson, TL (2019) Long-term effects of tree density and tree shape on apple orchard performance, a 20 year study – part 2, economic analysis. Scientia Horticulturae 244: 435444.CrossRefGoogle Scholar
Madenoğlu, S, Pınar, , Şahin, S, Erpul, G (2024) Sustainable land management for mitigating soil erosion at the catchment scale. Türkiye Tarımsal Araştırmalar Dergisi 11: 176190.CrossRefGoogle Scholar
Marker, M, Angeli, L, Bottai, L, Costantini, R, Ferrari, R, Innocenti, L, Siciliano, G (2008) Assessment of land degradation susceptibility by scenario analysis: a case study in southern Tuscany, Italy. Geomorphology 93: 120129.CrossRefGoogle Scholar
Mcharo, M, Maghenda, M (2021) Cost-Benefit analysis of sustainable land and water management practices in selected highland water catchments of Kenya. Scientific African 12: e00779.CrossRefGoogle Scholar
Meliho, M, Nouira, A, Benmansour, M, Boulmane, M, Khattabi, A, Mhammdi, N, Benkdad, A (2019) Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. Journal of Environmental Radioactivity 208: 106021.CrossRefGoogle Scholar
Moisa, MB, Babu, A, Getahun, K (2023) Integration of geospatial technologies with RUSLE model for analysis of soil erosion in response to land use/land cover dynamics: a case of Jere watershed, western Ethiopia. Sustainable Water Resources Management 9: 13.CrossRefGoogle Scholar
Moore, ID, Burch, GJ (1986) Physical basis of the length-slope factor in the universal soil loss equation. Soil Science Society of America Journal 50: 1294–1289.CrossRefGoogle Scholar
Nguyen, QV, Liou, YA, Nguyen, KA, Tran, DP (2023) Enhancing basin sustainability: integrated RUSLE and SLCC in land use decision-making. Ecological Indicators 155: 110993.CrossRefGoogle Scholar
Nieto, LG, Reig, G, Lordan, J, Sazo, MM, Hoying, SA, Fargione, MJ et al. (2023) Long-term effects of rootstock and tree type on the economic profitability of ‘Gala’, ‘Fuji’ and ‘Honeycrisp’ orchards performance. Scientia Horticulturae 318: 112129.CrossRefGoogle Scholar
Pan, X, Baquy, MAA, Guan, P, Yan, J, Wang, R, Xu, R, Xie, L (2020) Effect of soil acidification on the growth and nitrogen use efficiency of maize in Ultisols. Journal of Soils and Sediments 20: 14351445.CrossRefGoogle Scholar
Panagos, P, Borrelli, P, Meusburger, K (2015a) A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water. Geosciences 5: 117126.CrossRefGoogle Scholar
Panagos, P, Borrelli, P, Meusburger, K, Alewell, C, Lugato, E, Montanarella, L (2015b) Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48: 3850.CrossRefGoogle Scholar
Panagos, P, Standardi, G, Borrelli, P, Lugato, E, Montanarella, L, Bosello, F (2018) Cost of agricultural productivity loss due to soil erosion in the European Union: from direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development 29: 471484.CrossRefGoogle Scholar
Patriche, CV (2023) Applying RUSLE for soil erosion estimation in Romania under current and future climate scenarios. Geoderma Regional 34: e00687.CrossRefGoogle Scholar
Perry, RL (1984) Working with soil limitations for orchard crops. Proceedings of the Ontario Horticultural Conference 1984: 164171.Google Scholar
Pimentel, D, Burgess, M (2013) Soil erosion threatens food production. Agriculture 3: 443463.CrossRefGoogle Scholar
Pınar, , Erpul, G (2023) Upscaling plot-based measurements of RUSLE C-factor of different leaf-angled crops in semi-arid agroecosystems. Environmental Monitoring and Assessment 195: 1341 CrossRefGoogle ScholarPubMed
Ravina, I, Magier, J (1984) Hydraulic conductivity and water retention of clay soils containing coarse fragments. Soil Science Society of America Journal 48: 736740.CrossRefGoogle Scholar
Renard, KG, Foster, GR, Weesies, GA, McColl, DK, Yoder, DC (1997) Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Washington, DC, USA: US Department of Agriculture.Google Scholar
Ricci, GF, Jeong, J, De Girolamo, AM, Gentile, F (2020) Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy 90: 104306.CrossRefGoogle Scholar
Risse, LM, Nearing, MA, Nicks, A, Leaflen, JM (1993) Application of radioactive fallout celsium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality 9: 215233.Google Scholar
Ritchie, H (2019) The world population is changing: for the first time there are more people over 64 than children younger than 5 [www document]. URL https://ourworldindata.org/population-aged-65-outnumber-children Google Scholar
Rutebuka, J, Kagabo, DM, Verdoodt, A (2019) Farmers’ diagnosis of current soil erosion status and control within two contrasting agro-ecological zones of Rwanda. Agriculture, Ecosystems and Environment 278: 8195.CrossRefGoogle Scholar
Rutebuka, J, Uwimanzi, AM, Nkundwakazi, O, Kagabo, DM, Mbonigaba, JJM, Vermeir, P, Verdoodt, A (2021) Effectiveness of terracing techniques for controlling soil erosion by water in Rwanda. Journal of Environmental Management 277: 111369.CrossRefGoogle ScholarPubMed
Saggau, P, Kuhwald, M, Duttmann, R (2023) Effects of contour farming and tillage practices on soil erosion processes in a hummocky watershed. A model-based case study highlighting the role of tramline tracks. Catena 228: 107126.CrossRefGoogle Scholar
Sathiyamurthi, S, Ramya, M, Saravanan, S, Subramani, T (2023) Estimation of soil erosion for a semi-urban watershed in Tamil Nadu, India using RUSLE and geospatial techniques. Urban Climate 48: 101424.CrossRefGoogle Scholar
Sattell, R, Dick, R, Luna, J, McGrath, D, Peachey, E (1998) Common Vetch. Corvallis, OR, USA: Oregon State University.Google Scholar
Saygın, F, Aksoy, H, Alaboz, P, Dengiz, O (2023a) Different approaches to estimating soil properties for digital soil map integrated with machine learning and remote sensing techniques in a sub-humid ecosystem. Environmental Monitoring and Assessment 195: 1061.CrossRefGoogle Scholar
Saygın, F, Alaboz, P, Aksoy, H, Dengiz, O, Imamoğlu, A, Çağlar, A, Koç, Y (2023b) Evaluation of the relationship between indices obtained from different satellite data and soil erosion parameters. Ege University Faculty of Agriculture Journal 60: 501513.Google Scholar
Saygın, F, Dengiz, O (2023) Detailed soil mapping and classification study for sustainable agricultural land management; Samsun-Vezirköprü example. Soil Studies 12: 4053.CrossRefGoogle Scholar
Schreiber, P (1904) Ueber die Beziehungen zwischen dem Niederschlag und der Wasseruhrung der Wasseruhrung der Fluse in Mitteleurapa. Meteorologische Zeitschrift 21: 441452.Google Scholar
Seitz, S, Goebes, P, Puerta, VL, Pereira, EIP, Wittwer, R, Six, J et al. (2019) Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development 39: 110.CrossRefGoogle Scholar
Şenol, S, Tekeş, Y (1995) Arazi değerlendirme ve arazi kullanım planlaması amacıyla geliştirilmiş bir bilgisayar modeli. İlhan Akalan Toprak ve Çevre Sempozyumu, Cilt I 7: 204210.Google Scholar
Solaimalai, A, Anantharaju, P, Irulandi, S, Theradimani, M (2020) Maize Crop: Improvement, Production, Protection and Post Harvest Technology. Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
Sys, C, Von Rants, E, Debaveje, J (1991) Land Evaluation – Part 1: Principles in Land Evaluation and Crop Production Calculations. Brussels, Belgium: Agricultural Publications.Google Scholar
Tang, Q, Xu, Y, Bennett, SJ, Li, Y (2015) Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. Environmental Earth Sciences 73: 17151724.CrossRefGoogle Scholar
Thomas, J, Joseph, S, Thrivikramji, KP (2018) Estimation of soil erosion in a rain shadow river basin in the southern Western Ghats, India using RUSLE and transport limited sediment delivery function. International Soil and Water Conservation Research 6: 111122.CrossRefGoogle Scholar
Tsai, F, Lai, JS, Nguyen, KA, Chen, W (2021) Determining cover management factor with remote sensing and spatial analysis for improving long-term soil loss estimation in watersheds. ISPRS International Journal of Geo-information 10: 19.CrossRefGoogle Scholar
Uğurlu, M (2021) Economic analysis of industrial hemp seed production: Vezirköprü example. Journal of the Institute Science and Technology 11: 35073518.Google Scholar
USDA (1979) Barley: Origin, Botany, Culture, Winter Hardiness, Genetics, Utilization. Washington, DC, USA: US Government Printing Office.Google Scholar
Vîrghileanu, M, Săvulescu, I, Mihai, BA, Bizdadea, CG, Paraschiv, MG (2024) RUSLE-based scenarios for sustainable soil management: case studies from Romanian Subcarpathians. European Journal of Soil Science 75: e13526.CrossRefGoogle Scholar
Wang, J, He, Q, Zhou, P, Gong, Q (2019) Test of the RUSLE and key influencing factors using GIS and probability methods: a case study in Nanling National Nature Reserve, south China. Advances in Civil Engineering 2019: 7129639.CrossRefGoogle Scholar
Wischmeier, WH, Smith, DD (1978) Predicting Rainfall Erosion Losses. Washington, DC, USA: US Department of Agriculture.Google Scholar
Wolz, KJ, DeLucia, EH (2019) Black walnut alley cropping is economically competitive with row crops in the Midwest USA. Ecological Applications 29: e01829.CrossRefGoogle ScholarPubMed
Xie, H, Zhang, Y, Zeng, X, He, Y (2020) Sustainable land use and management research: a scientometric review. Landscape Ecology 35: 23812411.CrossRefGoogle Scholar
Zare, M, Panagopoulos, T, Loures, L (2017) Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran. Land Use Policy 67: 558572.CrossRefGoogle Scholar
Supplementary material: File

Saygın et al. supplementary material 1

Saygın et al. supplementary material
Download Saygın et al. supplementary material 1(File)
File 521.7 KB
Supplementary material: File

Saygın et al. supplementary material 2

Saygın et al. supplementary material
Download Saygın et al. supplementary material 2(File)
File 24.2 KB
Supplementary material: File

Saygın et al. supplementary material 3

Saygın et al. supplementary material
Download Saygın et al. supplementary material 3(File)
File 14.5 KB